高压电机节能控制技术资料.doc_第1页
高压电机节能控制技术资料.doc_第2页
高压电机节能控制技术资料.doc_第3页
高压电机节能控制技术资料.doc_第4页
高压电机节能控制技术资料.doc_第5页
免费预览已结束,剩余8页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高压电机节能控制方案一、高压电机节能控制系统1、风机水泵优化节能控制方案11、据20世纪90年代初的粗略统计,我国风机、水泵的总耗电量约占国家总发电量的30;据21世纪初的一项统计,我国电动机驱动用电约占总发电量的23,其中约一半用于风机、水泵和压缩机(其中压缩机用量较小)的驱动。这2个数据比较接近,都说明了风机及水泵使用量大、面广的基本情况。风机的本体效率大致为80(国际先进水平为80一85)。所谓本体效率是指风机本身单独运行时可能达到的效率,或风机在风机生产厂家试车台上的效率。2003年原机械工业部节能中心提出,对于机号大于10(即风机叶轮直径大于1 m)、中等压力系数的大部分风机,其出厂效率应达到7883。而实际系统运行效率或在线效率仅为30一40。12、可实现的控制方案l 恒压强控制l 恒流量控制l 一拖多控制l 多级联控制l 多回路控制13、控制系统组成l 采用工业控制总线及工业以太网l 选用国际品牌控制器及先进控制算法l 选用国际品牌传感器及变送器l 可实现本地及远程监控2、空压机优化节能控制方案空气压缩机是一种利用电动机将气体在压缩腔内进行压缩并使压缩的气体具有一定压力的设备。在各种行业中它担负着为工厂中所有气动元件,各种气动阀门提供气源的职责。空压机的能源消耗很大,它占到总消耗的77%,其次是维护费用,占到总消耗的18%,而设备投资只占到总成本的5。空压机的电耗是十分惊人的。因此找到空压机耗能的原因,有针对性的解决,才能进行能效的提高。为了保持压缩机经济运行,充分发挥压缩机组的潜能,需要对其优化调节。21电气联锁控制技术避免电动机的频繁启停。由于空压机的空载启动电流大约是额定电流的57倍,对电网及其它用电设备冲击较大,电能消耗较大,同时,空压机的电机使用寿命也会缩短。针对具体应用可优化自动加卸载控制技术, 22恒压变频控制技术空压机的恒压变频调节控制即通过采集供气管网压力信号的变化,调节变频器输出电源的频率以改变电动机的转速来控制空压机单位时间的出气量,从而达到调节总管管网压力的目的。23空压站机群优化控制为了应对压缩空气系统中用气量、用气压力的变化引起管网的流量、压力不断变化,压缩机运行工况不断调节,以满足用户用气的要求同时保持压缩机经济运行,空压站联网将成为一种发展趋势,空压站机群运行时间的优化控制应运而生。空压站机群运行时间的优化控制系统可以根据系统的压力和流量等参数的变化,运行合适数量和容量的空压机,使尽可能少的空压机处于部分负荷状态,同时使平均每台空压机的运行时间降低,减少空压机的运行和维护费用。24预测调压控制针对区域用户为不同负荷要求不同用气压力而以整条管路用气的最高等级压力设定进行恒压控制造成能源浪费,预测调压控制将是一种很好的解决方案。预测调压控制技术是采用基于预测控制器作为前级控制平衡调节空压机出口压力的智能控制应用技术预测控制器算法是基于预测控制理论的模型算法,预测控制由4个基本模块组成。主要包括内部模型、反馈校正、滚动优化计算和参考输入轨迹等几部分。它采用基于脉冲响应的非参数模型作为内部模型,用过去和未来的压力输人输出信息,根据内部模型,预测系统未来的压力输出状态,经过用模型输出误差进行反馈校正以后,再与参考输入轨迹进行比较,应用二次型性能指标进行滚动优化,然后再计算当前时刻应加于系统的控制动作,完成整个控制循环。采用预测调压方法获得空压机运行状态与压缩空气压力设定值,达到空压站管网压力平衡调节,同时有效避免空压机卸载操作和管路放空操作,达到节能的控制目的。25优化调度控制方法优化调度策略的实施建立在厂区管网信息化的基础上,针对管网负荷的变化,实时调整并保证产气与供气的平衡,通过自动化的手段,既保证用户用气需求,又避免人为操作过程中的过剩浪费。对于压缩空气系统多目标优化调度的遗传算法的核心技术是控制系统根据遗传算法每代产生大量可行解和隐含的并行性这一特点设计一种决策优化方法,基于排序的表现矩阵测度可行解,对所有目标总体表现好坏的向量进行比较。另外引入个体适应度定标保持种群的多样性,采用自适应变化的方式确定交叉和变异概率。该算法通过一次计算即可得到问题的非劣解集,简化了多目标问题的优化求解步骤。优化算法的主要步骤有适应度计算、交叉和变异概率计算和最优解保存策略。最终的结果为各系统的用电量与产气量的非劣解关系,用于指导全系统或子系统的空压机运行管理,达到经济合理的节能目的。二、高压变频器1、高压变频器简介1.1产品特点一体化设计一体化设计,结构紧凑,功率单元采用独创的功率模块与电容模块分离技术,并将功率模块与电容模块前后布置,为同类产品中体积最小的功率模块,其重量只有26kg,极大提高了空间利用率。高功率密度高功率密度,紧凑型设计,更加有效地提高了功率单元内部空间的利用率和散热效率。模块化设计模块化设计,拆装方便,接口采用快速连接设计,即装即用,易维护。在更换功率单元时只需拔除光纤,即可抽屉式插拔进行作业。控制简单触摸屏操作,良好的人机交互界面。高功率因数和几近完美的正弦波输入电流在高压变频器中,具有相同标号的副边绕组相位一致,标号不同的副边绕组之间具有一定的相位差,可以消除电网侧的谐波电流,并且能保持接近1的输入功率因数,极大地改善了电网侧电源的质量。下图为实测高压变频器输入电压波形和输入电流波形。 图1-1 高压变频器输入电压波形 图1-2 高压变频器输入电流形几近完美的正弦波输出电压采用SPWM调制控制技术,输出近似完美的正弦波,输出波形符合中国国家标准CB/T 14549-93及IEEE19-1992电能质量标准的要求。如图1-3所示。(1) 无需使用任何形式的谐波滤波器或功率补偿装置,消除电机运行的谐波问题。(2) 无电机共模电压引起的绝缘应力,输入移相整流变压器有效地消除变频器共模电压对电机的影响。(3) 独有的SPWM控制,确保较小的dv/dt,对电缆长度无严格限制。功率单元相互串接成星型接法输出给电机供电,通过对每个单元的SPWM波形进行重组,可得到阶梯PWM波形。这种波形正弦度好,dv/dt小,可减少对电缆和电机的绝缘损坏,无须输出滤波器就可以使用长度很长的输出电缆,电机不需要降额使用,可直接用于旧设备的改造;同时,电机的谐波损耗大大减少,消除了由此引起的机械振动。(a) 输入电流波形图 (b) 输出电压波形图 (c)输出电流波形图图1-3 输入与输出电流波形1.2 产品特性100系列高压变频器是一种环保节能产品,用在发电厂的高压电机中可以平均节约电能40%左右。目前,大功率高压变频器的使用范围基本上覆盖了我国电力、供水、冶金、石油、化工、采矿、煤炭、造纸、建材等诸多主要行业,是其它调速设备所无法比拟的一种新型高压交流电动机调速装置。1000系列矿井提升机专用四象限高压变频器是采用目前国际上先进的IGBT功率单元级联多电平技术、全数字控制技术、SPWM脉宽调制技术,具有完全满足提升机独特的应用工艺要求、高效节能、高功率因数及高可靠性等特点.1000系列高压变频器是根据提升机应用工艺需要,采用目前国际上先进的IGBT功率单元串联多电平技术、数字控制技术、SPWM脉宽调制技术和AFE有源前端控制技术等最新科技成果研制而成的高压电机节能调速系列产品。具有高效节能、高功率因素及高可靠性等特点。产品的整体技术性能居世界同期先进水平。1000系列变频器采用IGBT变频功率单元串联多重化叠加技术,属于高-高电压源型变频器,高压直接输入输出,无需输出变压器,效率高,输出频率范围宽。1000系列变频器实现了电机的软起动,起动电流小,而且可以连续调速,选择最佳速度,还可根据用户的速度曲线图完成自动控制,既节约了能源,又提高了生产效率。1000系列变频器可以实现远程监控和网络化控制,可以和用户现场灵活连接,满足用户的不同要求,采用光纤通讯技术,使系统抗电磁干扰的能力增强,运行更加安全可靠。1.3 技术指标表1-1 1000系列高压变频器的主要技术指标概览功率半导体 IGBT线路侧变频器 AFE有源前端电机侧变频器 多电平变频器(PWM)输入输入电压 三相,50Hz,3.3kV/4.16kV/6kV/10kV允许波动 15%输出输出电压 3.3kV/4.16kV/6kV/10kV输出电流 600A输出频率 0.0150/60Hz输出波形 载波移相调制正弦波性能输入波形 电流谐波4%,无需谐波滤波器输出波形 电压谐波失真2%,dv/dt1000V/us, 电流谐波失真2.5%,直流分量95%功率因数 0.96,无需功率因数补偿装置可靠性及寿命 设计寿命25年, 平均失效间隔MTBF75000小时, 平均恢复时间MTTR10分钟控制 控制方式 无传感器矢量控制、有速度传感器矢量控制频率分辨率 0.01Hz高压隔离 光纤信号传输控制电压 三相AC380V通讯 Modbus-RTU协议、 Profibus协议、 Modubs-TCP协议、CAN-OPEN协议人机交互界面 电源输入电流、输入电压、频率、功率、功率因数等 输出电机电流、电压、功率、转速等 系统故障、报警、操作、实时曲线数据记录环境使用场所 无导电或爆炸尘埃,无腐蚀金属或破坏绝缘的气体或蒸汽环境温度 -1040环境湿度 5% - 90%(20以下),无凝露海拔高度 1000米以下(标准产品)存储/运输温度 -25 +45其它保护功能 过流、短路、接地、过压、欠压、超温、通讯故障、缺相、单元类故障等保护。冷却方式 风冷或水冷保护等级 IP30220kV金都变电站四通一平工程于4月份开工,施工过程中正逢雨季。我项目部在工程量大、施工条件困难的情况下,在现场施工中采用大型机械,高速高效的满足工期的需要。button. Select login rule button above the rule number menu under . Then open the barcode generator for the barcode002 part of the Properties dialog box, click the factor/control button in the destination edit box,Open the barcode generator for the barcode003 part of the Properties window, click the factor/control button, and then at the destination use the Ctrl + v, to enter into the well on the 2nd floor you just copied right 2nd truck name (example PART_STORE_00099), then click on OK button. Open 2 right up 3rd truck Properties window, use the Ctrl + c will summary property names are copied. Open the barcode generator for the barcode004 part of the pop-up menu in the property dialog box, click the factor/control button in the destination using the Ctrl + v, to enter copy 2 3rd truck name right (case of PART_STORE_00100), then click the OK button. Then use Lesson3-2.emu as the file name to save the other. Click on menu bar | simulation | start | or time column in the start button, you see the goods are put on the conveyor belt, and robotic loading pallets for through the pulley tracks were moved to the automatic tridimensional warehouse storage. If Tray 1 out of the library, select the tray popup menu IOSection Library instructionmenu (1 layer). If the tray 2 out of the library, right-click with the mouse on the tray in the pop-up menu, select IOSection Library instructionenu (2). From 2 out of the tray after it has been transferred to the transit point discharge, workers unloaded the goods. Empty tray again by rail back to automatic stereoscopic warehouse. Remove the cargo by conveyor belts was transferred to corresponding cage inside the vehicle. Note 1: simulation before the start, please set the environment for the 1th floor sections to be seen. Click the menu bar | Environment | Environment2 工作原理2.1 拓扑结构高压变频器的主电路如图2-1所示,不同电压等级串联级数各不相同,如6kV串联级数为6级,10kV串联级数为9级。通过主电路图,可以直观的了解变压器的副边绕组与功率单元以及各功率单元之间的电路连接方式,具有相同标号的3组副边绕组,分别向同一功率室(同一级)内的三个功率单元供电。第一级内每个功率单元的一个输出端连接在一起形成星型连接点,另一个输出端则与下一级功率单元的输出端相连,依此方式,将同一相的所有功率单元串联在一起,便形成了一个星型连接的三相高压电源,驱动电动机运行。 图2-1 高压变频器主电路拓扑结构图2.2 功率单元电路原理根据HVC产品类型不同,功率单元存在如图2-2所示两种拓扑结构。(a) 两象限型功率单元拓扑结构(b) 再生制动型四象限功率单元拓扑结构图2-2 高压变频器产品功率单元拓扑结构图1000系列变频器为提升机专用变频器,采用再生制动型四象限功率单元。提升机重物下放运行时,电动机运行在发电状态,其能量可以通过功率单元回馈到电网,与传统的能耗制动相比,更加省电节能。功率单元采用全控型器件IGBT进行整流和逆变,为交直交结构,功率因数高。中间直流回路采用金属薄膜电容器储能,耐过压能力强、能承受大的波纹电流、有自愈性,寿命远高于电解电容。输入侧结构各功率单元的输入侧由移相变压器副边各绕组独立供电,移相变压器副边绕组分为三组,每组构成一相,如前所述形成多级移相叠加的整流方式可以大大改善电网侧的电流波形,使其负载下的网侧功率因数接近1.另外由于变频器副边绕组的独立性,从而使每个功率单元的主回路相对独立,类似一台常规低压变频器,便于采用现有的成熟技术。输出侧结构输出侧U、V、W相分别由各功率单元输出端子相互串联结成星形接法给电动机供电,通过对每个单元的PWM波形进行重组可得到阶梯PWM波形,这种波形正弦度好,dt/dv小,可减少对电缆和电机的绝缘损坏,无须输出滤波器就可以在输出电缆长度很长的情况下使用,电动机也不需要降额使用,可直接用于旧设备的改造;同时,电机的谐波损耗也大大减少,消除了由此引起的机械振动,减小了轴承和传动部分的机械应力。2.3 输出PWM移相原理高压变频器的输出电压由多个功率单元的输出电压相互叠加而成。6kV、6级功率单元的电压叠加原理如图2-3所示,10kV、9级功率单元的电压叠加原理如图2-4所示。图2-3 6KV输出电压叠加原理图2-4 10KV输出电压叠加原理电网电压为6kV,高压变频器的每个功率单元的最高输出电压为580V,同一相的六个单元串联后,相电压为580V6=3480V,由于三相连接成星型,线电压为1.7323480V6000V,达到电网电压的水平。如电网电压为10kV,则采用9级单元串联,输出电压原理同上。功率单元串联后得到的是阶梯正弦的PWM波形,如下图所示。这种波形正弦度好,du/dt小,对电机和电缆的绝缘无损坏,无需输出滤波器,电动机也不需要降额使用,可直接用于旧电动机的改造;同时电机的谐波损耗可忽略不计,能够消除由此引起的机械振动,轴承和传动部分的机械应力。图2-5为实测的高压变频器输出电压波形和电流波形。 图2-5 高压变频器输出电压波形及输出电流波形3 系统组成高压变频器由电控柜、功率柜、电抗器柜和进线变压器柜组成。3.1电控柜电控柜的核心部分是自主研发的基于双数据总线背板技术的控制机。控制机能够实现分布式处理,PWM波的生成控制,快速保护及网络通讯控制等功能,同时能用于开关量和模拟量信号的逻辑处理,运行和故障联锁,可以和用户现场灵活连接。控制器与功率单元之间采用光纤通讯技术,一次回路与二次回路完全可靠隔离,系统具有极高的安全性,同时具有很好的抗电磁干扰能力。高压变频器电控柜主要完成如下功能:控制模式设定有速度传感器矢量控制模式无传感器矢量控制模式V/F曲线控制模式本地/远程设定触摸屏设定远程端子或上位机设定支持Modbus协议,CAN通讯协议、Profibus-DP协议和TCP/IP协议,可以联网运行运行数据显示及记录实时监控、记录高压变频器运行状态及参数可查询历史数据和历史故障记录,查询用户的远程操作记录故障自诊断及报警具有故障自诊断与查询功能,报警并向用户显示发生的故障及位置,同时切断故障部分,并可查询故障记录。完善的保护功能具有过电流保护、过电压保护、欠电压保护、不平衡保护、超温保护、功率单元故障保护、控制系统故障保护、冷却风机异常等各种保护。 远程操作功能高压变频器具有远程操作功能,可进行远程启动、远程停止、远程复位、远程急停、远程电机正向、远程电机反向、远程频率给定等远程操作。通过变频输出模块可查看变频器运行、停止、就绪、报警及故障等功能。支持Modbus、Profibus-DP及TCP/IP通讯协议。3.2 功率柜高压变频器以横排为单位,从上至下依次是U相、V相、W相;以竖排为单位,若是10KV、9级功率单元串联,从左至右单元级数1-9级。如图3-5所示:图3-5 高压变频器功率柜1-冷却风机;2-功率单元;3-光纤插孔;4-柜门行程开关;5-功率单元散热器;6-防尘滤网功率单元是组成高压变频器的最小单位。高压变频器每个功率单元采用模块化设计,在结构和电气性能上完全一致,可以通用互换。功率单元如图3-6所示:图3-6 功率单元1-把手;2-功率单元散热器;3-逆变板;4-光纤插孔;5-整流板;6-电源板功率单元主要由整流电路、逆变电路、控制电路、驱动电路、故障检测电路、通讯电路、指示电路等组成。功率单元的基本拓扑为交直交三相整流/单相逆变电路,其主回路如图3-7所示。图3-7 功率单元主回路功率单元的整流电路将变压器副边绕组提供的三相交流电源整流为脉动的直流电源,经过大容量的薄膜电容滤波后,可以得到稳定的直流电源。通过对IGBT组成的逆变桥进行正弦调制的PWM控制,可得到等效正弦的单相交流输出。IGBT等功率器件的散热采用先进高效的风冷散热技术,大大提高了功率器件的工作安全可靠性。另外,每个功率单元都能显示自己的工作状态和故障信息等。当功率单元发生故障后将会向控制系统发出信号,控制系统将会及时的处理。3.3 电抗器柜每个功率单元经过电抗器与变压器二次电源连接,电抗器用于限制电网电压突变和操作过电压引起的电流冲击,平滑电源电压中包含的尖峰脉冲及整流电路换向时产生的电压缺陷,有效的保护变频器和改善功率因数,它既能阻止来自电网的干扰,又能减少整流单元产生的谐波电流对电网的污染。图3-8 电抗器柜1-冷却风机;2-门开关;3-电抗器 ;4-防尘滤网3.4 变压器柜变压器柜如图3-9所示。变压器是采用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论