2017版高考数学第7章不等式推理与证明第五节推理与证明AB卷文【新人教版】.docx_第1页
2017版高考数学第7章不等式推理与证明第五节推理与证明AB卷文【新人教版】.docx_第2页
2017版高考数学第7章不等式推理与证明第五节推理与证明AB卷文【新人教版】.docx_第3页
2017版高考数学第7章不等式推理与证明第五节推理与证明AB卷文【新人教版】.docx_第4页
2017版高考数学第7章不等式推理与证明第五节推理与证明AB卷文【新人教版】.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【大高考】2017版高考数学一轮总复习 第7章 不等式、推理与证明 第五节 推理与证明AB卷 文 新人教A版1.(2016新课标全国,4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ,B点表示四月的平均最低气温约为5 .下面叙述不正确的是()A.各月的平均最低气温都在0 以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 的月份有5个解析由题意知,平均最高气温高于20 的六月,七月,八月,故选D.答案D2.(2016新课标全国,16)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_.解析由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,所以由甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.答案1和33.(2014课标,14)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为_.解析根据甲和丙的回答推测乙没去过B城市,又知乙没去过C城市,故乙去过A城市.答案A1.(2016浙江,8)如图,点列An,Bn分别在某锐角的两边上,且|AnAn1|An1An2|,AnAn2,nN*,|BnBn1|Bn1Bn2|,BnBn2,nN*(PQ表示点P与Q不重合).若dn|AnBn|,Sn为AnBnBn1的面积,则()A.Sn是等差数列 B.S是等差数列C.dn是等差数列 D.d是等差数列解析Sn表示点An到对面直线的距离(设为hn)乘以|BnBn1|长度一半,即Snhn|BnBn1|,由题目中条件可知|BnBn1|的长度为定值,过A1作垂直得到初始距离h1,那么A1,An和两个垂足构成等腰梯形,则hnh1|A1An|tan (其中为两条线所成的锐角,为定值),从而Sn(h1|A1An|tan )|BnBn1|,Sn1(h1|A1An1|)|BnBn1|,则Sn1Sn|AnAn1|BnBn1|tan ,都为定值,所以Sn1Sn为定值,故选A.答案A2.(2016山东,12)观察下列等式:12;23;34;45;照此规律,_.解析观察等式右边的规律:第1个数都是,第2个数对应行数n,第3个数为n1.答案n(n1)3.(2015陕西,16)观察下列等式111据此规律,第n个等式可为_.解析等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n个等式左边有2n项且正负交错,应为1;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n个有n项,且有前几个的规律不难发现第n个等式右边应为.答案14.(2013陕西,13)观察下列等式(11)21(21)(22)2213(31)(32)(33)23135照此规律,第n个等式可为_.解析观察规律,等号左侧为(n1)(n2)(nn),等号右侧分两部分,一部分是2n,另一部分是13(2n1).答案(n1)(n2)(nn)2n13(2n1)5.(2014福建,16)已知集合a,b,c0,1,2,且下列三个关系:a2;b2;c0有且只有一个正确,则100a10bc等于_.解析可分下列三种情形:(1)若只有正确,则a2,b2,c0,所以ab1与集合元素的互异性相矛盾,所以只有正确是不可能的;(2)若只有正确,则b2,a2,c0,这与集合元素的互异性相矛盾,所以只有正确是不可能的;(3)若只有正确,则c0,a2,b2,所以b0,c1,所以100a10bc10021001201.答案2016.(2014山东,4)用反证法证明命题“设a,b为实数,则方程x3axb0至少有一个实根”时,要做的假设是()A.方程x3axb0没有实根B.方程x3axb0至多有一个实根C.方程x3axb0至多有两个实根D.方程x3axb0恰好有两个实根解析至少有一个实根的否定是没有实根,故做的假设是“方程x3axb0没有实根”.答案A7.(2016浙江,20)设函数f(x)x3,x0,1,证明:(1)f(x)1xx2;(2)f(x).证明(1)因为1xx2x3,由于x0,1,有,即1xx2x3,所以f(x)1xx2.(2)由0x1得x3x,故f(x)x3xx,所以f(x).由(1)得f(x)1xx2,又因为f,所以f(x).综上,f(x).8.(2015四川,21)已知函数f(x)2xln xx22axa2,其中a0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a(0,1),使得f(x)0恒成立,且f(x)0在区间(1,)内有唯一解.(1)解由已知,函数f(x)的定义域为(0,),g(x)f(x)2(x1ln xa),所以g(x)2,当x(0,1)时,g(x)0,g(x)单调递减;当x(1,)时,g(x)0,g(x)单调递增.(2)证明由f(x)2(x1ln xa)0,解得ax1ln x,令(x)2xln xx22x(x1ln x)(x1ln x)2(1ln x)22xln x,则(1)10,(e)2(2e)0,于是,存在x0(1,e),使得(x0)0,令a0x01ln x0u(x0),其中u(x)x1ln x(x1),由u(x)10知,函数u(x)在区间(1,)上单调递增,故0u(1)a0u(x0)u(e)e21,即a0(0,1),当aa0时,有f(x0)0,f(x0)(x0)0,再由(1)知,f(x)在区间(1,)上单调递增,当x(1,x0)时,f(x)0,从而f(x)f(x0)0;当x(x0,)时,f(x)0,从而f(x)f(x0)0;又当x(0,1时,f(x)(xa0)22xln x0,故x(0,)时,f(x)0,综上所述,存在a(0,1),使得f(x)0恒成立,且f(x)0在区间(1,)内有唯一解.9.(2015江苏,20)设a1,a2,a3,a4是各项为正数且公差为d(d0)的等差数列.(1)证明:2a1,2a2,2a3,2a4依次构成等比数列;(2)是否存在a1,d,使得a1,a,a,a依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a,a,a,a依次构成等比数列?并说明理由.(1)证明因为2an1an2d(n1,2,3)是同一个常数,所以2a1,2a2,2a3,2a4依次构成等比数列,(2)解令a1da,则a1,a2,a3,a4分别为ad,a,ad,a2d(ad,a2d,d0).假设存在a1,d,使得a1,a,a,a依次构成等比数列,则a4(ad)(ad)3,且(ad)6a2(a2d)4.令t,则1(1t)(1t)3,且(1t)6(12t)4,化简得t32t220(*),且t2t1.将t2t1代入(*)式,t(t1)2(t1)2t23tt13t4t10,则t.显然t不是上面方程的解,矛盾,所以假设不成立.因此不存在a1,d,使得a1,a,a,a依次构成等比数列.(3)解假设存在a1,d及正整数n,k,使得a,a,a,a依次构成等比数列,则a(a12d)n2k(a1d)2(nk),且(a1d)nk(a13d)n3k(a12d)2(n2k).分别在两个等式的两边同除以a及a,并令t,则(12t)n2k(1t)2(nk),且(1t)nk(13t)n3k(12t)2(n2k).将上述两个等式两边取对数,得(n2k)ln(12t)2(nk)ln(1t),且(nk)ln(1t)(n3k)ln(13t)2(n2k)ln(12t).化简得2kln(12t)ln(1t)n2ln(1t)ln(12t),且3kln(13t)ln(1t)n3ln(1t)ln(13t).再将这两式相除,化简得ln(13t)ln(12t)3ln(12t)ln(1t)4ln(13t)ln(1t)(*).令g(t)4ln(13t)ln(1t)ln(13t)ln(12t)3ln(12t)ln(1t),则g(t).令(t)(13t)2ln(13t)3(12t)2ln(12t)3(1t)2ln(1t),则(t)6(13t)ln(13t)2(12t)ln(12t)(1t)ln(1t).令1(t)(t),则1(t)63ln(13t)4ln(12t)ln(1t).令2(t)1(t),则2(t)0.由g(0)(0)1(0)2(0)0,2(t)0,知2(t),1(t),(t),g(t)在和(0,)上均单调.故g(t)只有唯一零点t0,即方程(*)只有唯一解t0,故假设不成立.所以不存在a1,d及正整数n,k,使得a,a,a,a依次构成等比数列.10.(2014天津,20)已知q和n均为给定的大于1的自然数.设集合M0,1,2,q1,集合Ax|xx1x2qxnqn1,xiM,i1,2,n.(1)当q2,n3时,用列举法表示集合A;(2)设s,tA,sa1a2qanqn1,tb1b2qbnqn1,其中ai,biM,i

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论