新人教A版高中数学(必修1)2.3《变量间的相关关系》学案2课时_第1页
新人教A版高中数学(必修1)2.3《变量间的相关关系》学案2课时_第2页
新人教A版高中数学(必修1)2.3《变量间的相关关系》学案2课时_第3页
新人教A版高中数学(必修1)2.3《变量间的相关关系》学案2课时_第4页
新人教A版高中数学(必修1)2.3《变量间的相关关系》学案2课时_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高一数学必修3导学案(教师版) 周次上课时间 月 日周课型新授课主备人使用人课题2.3 变量间的相关关系教学目标1. 通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;2. 知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程教学重点作出散点图和根据给出的线性回归方程系数公式建立线性回归方程。教学难点对最小二乘法的理解。课前准备多媒体课件教学过程:复习回顾标准差的公式为:_创设情境1、函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系2、在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题。”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?3、“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?新知探究思考:考察下列问题中两个变量之间的关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄. 这些问题中两个变量之间的关系是函数关系吗? 一、相关关系:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系。【说明】函数关系是一种非常确定的关系,而相关关系是一种非确定性关系。思考探究:1、有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语。吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?2、某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿出生率低,于是他得出了一个结论:天鹅能够带来孩子。你认为这样的结论可靠吗?如何证明这个问题的可靠性?分析:(1)吸烟只是影响健康的一个因素,对健康的影响还有其他的一些因素,两者之间非函数关系即非因果关系; (2)不对,这也是相关关系而不是函数关系。上面提到了很多相关关系,那它们之间的相关关系强还是弱?我们下面来研究一下。二、散点图探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:年龄23273941454950脂肪9.517.821.225.927.526.328.2 年龄53来545657586061脂肪29.630.231.430.833.535.234.6其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数。思考探究:1、对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?2、为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗? 在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形称为散点图。3、观察人的年龄的与人体脂肪含量散点图的大致趋势,有什么样的特点?阅读课本,这种相关关系我们称为什么?还有没有其他的相关关系?它又有怎样的特点?三、线性相关、回归直线方程和最小二乘法在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点? 如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线。我们所画的回归直线应该使散点图中的各点在整体上尽可能的与其接近。我们怎么来实现这一目的呢?说一说你的想法。设所求的直线方程为=bx+a,其中a、b是待定系数。则i=bxi+a(i=1,2,n).于是得到各个偏差yii =yi(bxi+a)(i=1,2,n)显见,偏差yii 的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n个偏差的平方和Q=(y1bx1a)2+(y2bx2a)2+(ynbxna)2表示n个点与相应直线在整体上的接近程度。记Q=这样,问题就归结为:当a、b取什么值时Q最小,a、b的值由下面的公式给出:其中=,=,a为回归方程的斜率,b为截距。求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫最小二乘法。【例题精析】有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的饮料杯数与当天气温的对比表: 摄氏温度-504712151923273136热饮杯数15615013212813011610489937654(1)画出散点图;(2)从散点图中发现气温与热饮杯数之间关系的一般规律;(3)求回归方程;(4)如果某天的气温是2,预测这天卖出的热饮杯数。解: (4)当x=2时,y=143.063【课堂小结】1、求样本数据的线性回归方程,可按下列步骤进行:(1)计算平均数,;(2)求a,b;(3)写出回归直线方程。2、回归方程被样本数据惟一确定,对同一个总体,不同的样本数据对应不同的回归直线,所以回归直线也具有随机性.。3、对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具有线性相关关系,即不存在回归直线,那么所得的“回归方程”是没有实际意义的。因此,对一组样本数据,应先作散点图,在具有线性相关关系的前提下再求回归方程。书面作业板书设计一、相关关系二、散点图三、线性相关、回归直线方程和最小二乘法例题讲解小结教后记1、2、巩固练习2.3变量间的相关关系 学习目标 (1)通过具体示例引导学生考察变量之间的关系,在讨论的过程中认识现实世界中存在着不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.(2) 通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.会作散点图,并对变量间的正相关或负相关关系作出直观判断.(3) 在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解统计的作用. 重点难点 重点:利用散点图直观认识变量间的相关关系.难点:理解变量间的相关关系. 学法指导 在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法。 问题探究复习回顾: 函数的定义二、情景设置: 客观事物是相互联系的,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?二、探究新知: 知识探究(一):变量之间的相关关系思考1:考察下列问题中两个变量之间的关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄. 这些问题中两个变量之间的关系是函数关系吗? 思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?思考3:上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何? 思考4:相关关系与函数关系的异同点:总结:对相关关系的理解应当注意以下几点: 其一是相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系.其二是函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系.然而,学会新词并不能使脚变大,而是涉及到第三个因素年龄.当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大.其三是在现实生活中存在着大量的相关关系,如何判断和描述相关关系,统计学发挥着非常重要的作用.变量之间的相关关系带有不确定性,这需要通过收集大量的数据,对数据进行统计分析,发现规律,才能作出科学的判断.(对具有相关关系的两个变量进行统计分析的方法叫回归分析.)知识探究(二):散点图 【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:课本85页的探究。思考1:描述一下散点图的含义。思考2:从上面问题的散点图中说明人的年龄的与人体脂肪含量具有什么相关关系? 思考3:正相关和负相关的定义是什么?它们各有什么特征?(1)正相关:散点图中的点散布在从 到 的区域。(2)负相关:散点图中的点散布在从 到 的区域。思考4:你能列举一些生活中的变量成正相关或负相关的实例吗?三、典例分析:例1 在下列两个变量的关系中,哪些是相关关系?正方形边长与面积之间的关系;作文水平与课外阅读量之间的关系;人的身高与年龄之间的关系;降雪量与交通事故的发生率之间的关系. 例2 以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:房屋面积(平方米)617011511080135105销售价格(万元)12.215.324.821.618.429.222 画出数据对应的散点图,并指出销售价格与房屋面积这两个变量是正相关还是负相关. 例3、某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:根据上述数据,气温与热茶销售量之间的有怎样的关系?气温/C261813104杯数202434385064知识探究(三):线性回归一、回归直线方程的推导思考1:人体脂肪含量和年龄关系散点图中点的分布从整体上看有何特点?思考2:如何描述这些特点?(1)回归直线:观察散点图的特征,如果各点大致分布在 附近,就称两个变量之间具有线性相关的关系,这条直线叫做回归直线。(2)回归方程: 对应的方程叫做回归方程。思考3:回归直线方程的推导:我们该怎样来求出这个回归方程?请同学们展开讨论,能得出哪些具体的方案?方案1、先画出一条直线,测量出各点与它的距离,再移动直线,到达一个使距离的和最小时,测出它的斜率和截距,得回归方程。20253035404550556065年龄脂肪含量0510152025303540方案2、在图中选两点作直线,使直线两侧 的点的个数基本相同。 20253035404550556065年龄脂肪含量0510152025303540方案3、如果多取几对点,确定多条直线,再求出这些直线的斜率和截距的平均值作为回归 直线的斜率和截距。而得回归方程。20253035404550556065年龄脂肪含量0510152025303540我们还可以找到更多的方法,但这些方法都可行吗? 科学吗?准确吗?怎样的方法是最好的?思考4:如何求解最有代表性的直线方程?假设已经得到两个具有线性相关关系的变量的一组数据 , , 。设所求回归方程为 其中,是待定参数。由最小二乘法得其中:是回归方程的 ,是 。注: 1、各点到该直线的距离的平方和最小,这一方法叫最小二乘法。2、我们把由一个变量的变化去推测另一个变量的方法称为回归方法。二、求线性回归方程例2:观察两相关变量得如下表:x-1-2-3-4-553421y-9-7-5-3-115379求两变量间的回归方程解:列表i12345678910-1-2-3-4-553421-9-7-5-3-1153799141512551512149计算,得所求回归直线方程为 y=x小结:求线性回归直线方程的步骤:第一步:画出散点图,判断是否具有相关关系第二步:列表;第三步:计算 第四步:代入公式计算b,a的值;第五步:写出直线方程。三、利用线性回归方程对总体进行估计例:有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:温度-504712151923273136杯数15615013212813011610489937654(1)画出散点图;(2)从散点图中发现气温与热饮销售杯数之间关系的一般规律;(3)求回归方程;(4)如果某天的气温是C,预测这天卖出的热饮杯数。解: (1)散点图温度热饮杯数(2)气温与热饮杯数成负相关,即气温越高, 卖出去的热饮杯数越少。(3)从散点图可以看出,这些点大致分布在一条直线附近。Y=-2.352x+147.767通过列表、计算、代入公式计算b,a的值、写出直线方程。 Y=-2.352x+147.767(4)当x=2时,y=143.063,因此,这天大约可以卖出143杯热饮。目标检测1、下列两个变量之间的关系哪个不是函数关系() A角度和它的余弦值 B.正方形边长和面积 C正边形的边数和它的内角和 D.人的年龄和身高2、 有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语.吸烟和健康之间有因果关系吗?每一个吸烟者的健康

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论