




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
. . . .全等三角形问题中常见的辅助线的作法常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造两条边之间的相等,两个角之间的相等。1、添加辅助线的方法和语言表述(1)作线段:连接;(2)作平行线:过点作;(3)作垂线(作高):过点作,垂足为;(4)作中线:取中点,连接;(5)延长并截取线段:延长使等于;(6)截取等长线段:在上截取,使等于;(7)作角平分线:作平分;作角等于已知角;(8)作一个角等于已知角:作角等于。2、全等三角形中的基本图形的构造与运用(1)倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形(2)截长补短法: 若遇到证明线段的和差倍分关系时,通常考虑截长补短法,构造全等三角形。截长:在较长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段;或延长一条较短线段等于较长线段,然后证明延长部分等于另一条较短线段 (3)角平分线:以角平分线为对称轴利用”轴对称性“构造全等三角形,利用的思维 模式是三角形全等变换中的“对折”。可以在角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。(4)一线三等角问题(“K”字图、弦图、三垂图):两个全等的直角三角形的斜边恰好是一个等腰直角三角形的直角边。(5)角含半角、等腰三角形的(绕顶点)旋转重合法:)图形补全:有一个角为60或120的,把该角添线后构成等边三角形。1、 倍长中线1、已知,如图ABC中,AB=5,AC=3,则中线AD的取值范围是_.2、如图,ABC中,E、F分别在AB、AC上,DEDF,D是中点,比较BE+CF与EF的大小.二、截长补短3、如图,ADBC,EA,EB分别平分DAB,CBA,CD过点E,求证;ABAD+BC。 4: 如图,ABC中,C2B,12。求证:ABACCD5、如图,在四边形ABCD中,BCBA,ADCD,BD平分,求证: 3、 角平分线造全等6、如图,在四边形ABCD中,BCBA,ADCD,BD平分,求证: 四、“K”字图、弦图、三垂图由ABEBCD导出 BC=BE+ED=AB+CD ED=AE-CD EC=AB-CD五、旋转(一)、含半角绕顶点旋转如图,四边形ABCD是正方形,方法:延长其中一个补角的线段(延长CD到E,使ED=BM ,连AE或延长CB到F,使FB=DN ,连AF ) 结论:MN=BM+DN AM、AN分别平分BMN和DNM翻折: 思路:分别将ABM和ADN以AM和AN 为对称轴翻折,但一定要证明 M、P、N三点共线.(B+D=180且AB=AD)(二)、等腰三角形绕顶点旋转ABE和ACF均为等边三角形 结论:(1)ABFAEC;(2)B0E=BAE=60(“八字型”模型证明);(3)OA平分EOF拓展: 条件:ABC和CDE均为等边三角形 结论:(1)、AD=BE (2)、ACB=AOB (3)、PCQ为等边三角形 (4)、PQAE (5)、AP=BQ (6)、CO平分AOE (7)、OA=OB+OC(8)、OE=OC+OD (7),(8)需构造等边三角形证明)条件:ABD和ACE均为等腰直角三角形 结论:(1)、BE=CD (2)BECD 条件:ABEF和ACHD均为正方形 结论:(1)、BDCF (2)、BD=CF变形一:ABEF和ACHD均为正方形,ASBC交FD于T,求证:T为FD的中点. 方法一: 方法二: 方法三: 变形二:ABEF和ACHD均为正方形,M为FD的中点,求证:ANBC 练习巩固1、如图在ABC中,ABAC,12,P为AD上任意一点,求证;AB-ACPB-PC2、如图,ABC中,BD=DC=AC,E是DC的中点,求证:AD平分BAE.3、已知:如图,是等边三角形, 求证:.4、如图,已知在ABC中,B=60,ABC的角平分线AD,CE相交于点O,求证:OE=OD 5、 已知:正方形ABCD中,MAN=45,MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N(1)当MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN(2)当MAN绕点A旋转到BMDN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(3)当MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想 1. 若不给自己设限,则人生中就没有限制你发挥的藩篱。2. 若不是心宽似海,哪有人生风平浪静。在纷杂的尘世里,为自己留下一片纯静的心灵空间,不管是潮起潮落,也不管是阴晴圆缺,你都可以免去浮躁,义无反顾,勇往直前,轻松自如地走好人生路上的每一步3. 花一些时间,总会看清一些事。用一些事情,总会看清一些人。有时候觉得自己像个神经病。既纠结了自己,又打扰了别人。努力过后,才知道许多事情,坚持坚持,就过来了。4. 岁月是无情的,假如你丢给它的是一片空
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公共关系专家危机处理技巧考核试卷及答案解析
- 机电电工基础知识培训课件
- 2025年安全管理培训考试模拟题及答案
- 2025年服务机器人应用技术员初级面试模拟题及答案
- 2025年安全生产监督测试题
- 2025年AI造型师职位面试准备问题集
- 2025年通信工程师中级技能考试模拟题及答案解析
- 新年祝福卡教学课件小班
- 2025年农家乐客房笔试秘籍
- 2025年工会安全检查员面试模拟题集
- 中医护理灸疗技术操作规范:督灸
- 泌尿外科手术分级管理制度
- 阿尔茨海默病药物治疗指南(2025)解读
- 报酬协议模板
- 《贵阳市公共交通场站设计导则》
- 新时代中小学教师职业行为十项准则
- 工业厂房独立基础土方开挖施工方案
- 职业指导师考试题库及答案(含各题型)
- 企业融资过程中的税务问题解析
- 足球俱乐部股权转让协议
- 电子商务在文化创意产业的应用与案例
评论
0/150
提交评论