




已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角函数 1 6三角函数模型的简单应用 1 了解曲线y asin x 在物理上的应用 了解建立该类问题的数学模型所应掌握的物理知识 2 理解并掌握解数学应用问题的一般步骤 掌握将所发现的规律抽象为恰当的三角函数问题的方法 并能正确选择恰当的角作为变量建立函数关系 基础梳理 三角函数模型的简单应用1 建立三角函数模型解决实际问题三角函数在数学中有着广泛的应用 在实际生活中也可以解决很多问题 如某天某段时间内温度的变化规律等 如果某种现象的变化具有 根据三角函数的性质 我们可以根据这一现象的特征和条件 利用三角函数知识构建数学模型 从而把这一具体现象转化为一个特定的数学模型 1 周期性三角函数模型 思考应用 1 下面是钱塘江某个码头今年春季每天的时间 单位 时 与水深 单位 米 的关系表 请仔细观察表格中的数据 你能够从中得到一些什么信息 分析 这是一道开放性试题 应该有多种不同答案 现将部分答案列举如下 答案 1 水深的最大值是7 5米 最小值是2 5米 2 水的深度开始由5 0米增加到7 5米 后逐渐减少一直减少到2 5 又开始逐渐变深 增加到7 5米后 又开始减少 3 水深变化并不是杂乱无章 而是呈现一种周期性变化规律 4 学生活动 作图 更加直观明了这种周期性变化规律 研究数据的两种形式 2 解三角函数应用题的基本步骤第一步 阅读理解 审清题意 读题要做到逐字逐句 读懂题中的文字叙述 理解叙述所反映的实际背景 在此基础上 分析出已知什么 求什么 从中提炼出相应的数学问题 第二步 搜集整理数据 建立数学模型 根据搜集到的数据 找出变化规律 运用已掌握的三角知识 物理知识以及其它相关知识建立关系式 在此基础上将实际问题转化为一个三角函数问题 实现问题的数学化 即建立三角函数模型 第三步 利用所学的三角知识对得到的三角函数模型予以解答 求得结果 第四步 将所得结论转译成实际问题的答案 思考应用 2 如思考应用1中一艘货船的吃水深度 船底与水面的距离 为4米 安全条例规定至少要有1 5米的安全间隙 船底与洋底的距离 试问 该船何时能够进入港口 在港口能待多久 已知当sin 0 2时 0 2014 x 0 3848 分析 用数学的眼光看 这里研究的是一个怎样的数学问题 水深 5 5米 得出2 5sin 5 4 1 5 即sin 0 2 解析 由题意得2 5sin 5 4 1 5 即sin 0 2 下面解三角不等式sin 0 2 由已知当sin 0 2时 0 2014 x 0 3848 记为xa 0 3848 结合图象 发现 在 0 24 范围内 方程sin 0 2的解一共有4个 从小到大依次记为 xa xb xc xd 则xb 6 0 3848 5 6152 xc 12 0 3848 12 3848 xd 12 5 6152 17 6152 因此货船可以在0时30分钟左右进港 早晨5时30分钟左右出港 或者是中午12时30分钟左右进港 在傍晚17时30分钟左右出港 每次可以在港口停留5小时左右 自测自评 1 单摆从某点开始来回摆动 离开平衡位置的位移和时间的函数关系式为 s 6sin 则单摆的运动周期为 最大位移是 d 3 函数y xcosx的部分图象是 解析 从图中可以看到函数为奇函数 因此可以排除a c 注意到当x 时 f x 0 则应排除b 故答案选d 答案 d 由图象研究函数的性质 函数y f x 的图象如图所示 则f x 的解析式可能是 a f x x cosxb f x x sinxc f x x sinxd f x x cosx分析 本题是利用已知图象探求函数解析式的试题 也称之为信息给予题 解析 从图中可以看到函数为奇函数 因此可以排除a d 注意到x 时 f 0的可能性 则应排除b 故答案选c 答案 c点评 由函数图象寻求函数解析式是近几年的热点试题 解决此类问题 一般是根据图象所反映出的函数性质来解决 而性质 如函数的奇偶性 周期性 对称性 单调性 值域 还有零点 特殊点等都可以作为判断的依据 跟踪训练 1 如图 单摆从某点开始来回摆动 离开平衡位置o的距离s厘米和时间t秒的函数关系为 s 6sin 那么单摆来回摆动一次所需的时间为 秒 1 已知函数模型解决实际问题 某港口水的深度y 米 是时间t 0 t 24 单位 时 的函数 记作y f t 下面是某日水深的数据 经长期观察 y f t 的曲线可近似地看成函数y asin t b的图象 1 试根据以上数据 求出函数y f t 的近似表达式 2 一般情况下 船舶航行时 船底离海底的距离为5米或5米以上时认为是安全的 船舶停靠时 船底只需不碰海底即可 某船吃水深度 船底离水面的距离 为6 5米 如果该船希望在同一天内安全进出港 请问 它至多能在港内停留多长时间 忽略进出港所需时间 分析 首先由对表格中数据的综合处理可得函数的周期 最值等 然后将 2 转化为简单的三角不等式 解析 1 由已知数据 知y f t 的周期t 12 振幅a 3 b 10 y 3sint 10 0 t 24 2 由题意 知该船安全进出港时 水深应不小于5 6 5 11 5 米 所以3sint 10 11 5 即sint 2k t 2k k z 12k 1 t 12k 5 又0 t 24 取k 0或k 1 从而有1 t 5或13 t 17 因此在一天中 该船最早能在凌晨1时进港 最晚在下午17时出港 在港口内最多能停16个小时 点评 1 本题以应用题的形式考查热点题型 设计新颖别致 独具匠心 2 此类 由已知条件或图象求函数的解析式 的题目 实质上是用 待定系数法 确定a b 与周期有关 可通过t 求得 而关键的一步在于如何确定 通常是将图象上已知点的坐标代入函数解析式 得到一个关于的简单三角方程 但到底取何值却值得考虑 若得方程sin 那么是取 还是取呢 这就要看所代入的点是在上升的曲线上 还是在下降的曲线上了 若在上升的曲线上 就取 否则就取 而不能同时取两个值 跟踪训练 2 已知某海滨浴场的海浪高度y 米 是时间t 0 t 24 单位 小时 的函数 记作 y f t 下表是某日各时的浪高数据 经长期观察 y f t 的曲线可近似地看成是函数y acos t b的图象 1 根据以上数据 求出函数y acos t b的最小正周期t 振幅a及函数表达式 2 依据规定 当海浪高于1米时才对冲浪爱好者开放 请根据 1 的结论 判断一天内的上午8 00时至晚上20 00时之间 有多少时间可供冲浪者进行运动 分析 首先由对表格中数据的综合处理可得函数的周期 最值等 然后将 2 转化为简单的三角不等式 12k 3 t 12k 3 又0 t 24 判断一天内的上午8 00时至晚上20 00时间之间 取k 1 从而有9 t 15 因此在一天内的上午8 00时至晚上20 00时间之间 上午9 00至下午15 00才对冲浪爱好者开放 有6个小时可供冲浪者进行运动 由实际数据拟合函数 下表给出了12月1日和12月2日两天内的海浪高度 相对于海堤上的零标尺记号 以米为单位 请依据此表预测12月5日下午1时的海浪高度 解析 根据表中数据画散点图 并用平滑曲线将其连接起来 可如下图所示 图 略 观察图象知 可以用函数y asin x 来拟合这些散点 观察图中曲线 其周期约为12 3小时 即 12 3 所以 0 511 由数据可知高低海浪之间的高度差为6 6米 故振幅a 3 3 所以 函数的解析式为y 3 3sin 因为当t 0时 y 2 75 所以sin 0 83 cos 0 56 利用计算器求得 2 165 从而y 3 3sin 0 511x 2 165 12月5日下午1时即t 109时 此时浪高约为y 3 3sin 0 511 109 2 165 3 2米 点评 拟合数据是一项重要的数据处理能力 本题利用散点图发现函数模型为y asin x 通过分析数据得到其周期及其振幅 当然还借助了计算器功能求出值 以及利用excel工具拟合了数据 这些都值得学习重视 跟踪训练 3 下表是阿拉斯加的安克雷奇一年中10天的白昼时间 1 以日期在1年365天中的位置序号为横坐标 白昼时间y为纵坐标 描出这些数据的散点图 2 确定一个满足这些数据的余弦函数 3 用 2 中的余弦函数模型估计安克雷奇7月3日的白昼时间 解析 1 2 由散点图知白昼时间与日期序号之间关系近似为y acos x t 由图形知函数的最大值为19 4 最小值为5 4 即ymax 19 4 ymin 5 4 19 4 5 4 14 a 7 19 4 5 4 24 8 得t 12 4 函数解析式的实际应用 某体育馆拟用运动场的边角地建一个矩形的健身室 如图所示 abcd是一块边长为50m的正方形地皮 扇形cef是运动场的一部分 其半径为40m 矩形aghm就是拟建的健身室 其中g m分别在ab和ad上 h在上 设矩形aghm的面积为s hcf 请将s表示为 的函数 并指出当点h在的何处时 该健身室的面积最大 最大面积是多少 注 已知sin cos 分析 本题主要考查学生解决实际问题的能力及函数最值的求解 解析 延长gh交cd于n 则nh 40sin ch 40cos hm nd 50 40cos am hg 50 40sin 故s 50 40cos 50 40sin 即s 100 25 20 sin cos 16sin cos 令t sin cos 答 当点h在的端点e或f处时 该健身室的面积最大 最大面积是500m2 点评 求解实际问题的三角函数应用题时 应注意从实际问题中分析出数学条件 进而形成数学关系式 最后根据三角函数的性质来进行计算与判断 从而使问题得解 跟踪训练 4 某时钟的秒针端点a到中心点o的距离为5cm 秒针均匀地绕点o旋转 当时间t 0时 点a与钟面上标12的点b重合 将a b两点的距离d cm 表示成t s 的函数 则d 其中t 0 60 解析 由题设 解析式可写成d asin t 的形式 易知a 10 且当t 0时 d 0 得 0 又当t 30时 d 10 得 所以d 10sint 点评 本题考查三角函数解析式在实际问题中的求法 1 某人的血压满足函数关系式f t 24sin 160 t 110 其中f t 为血压 t为时间 则此人每分钟心跳的次数为 a 60b 70c 80d 902 电流i a 随时间t s 变化的函数关系式为i 5sin则当t 时 电流i为 a 5b c 2d 5 c b 一级训练 1 利用三角函数模型研究常见问题的方法 1 常见问题的几种模式 日常生活的应用问题 建筑学方面的应用问题 航海中的应用问题 气象学中的应用问题 天文学中的应用问题 物理学中的应用问题 2 实际问题的背景往往比较复杂 而且需要综合应用多学科的知识才能解决 因此 在应用数学知识解决实际问题时 应当注意从复杂的背景中抽取基本的数学关系 还要调动相关学科知识来帮助理解问题 3 在计算中 可借助计算器辅助计算 否则 相关计算结果应在条件中给出 4 要注意利用数形结合数学思想解实际应用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年厨房安全试题及答案
- 护士双人考试题及答案
- 2025华东医院招聘工作人员考试参考试题及答案解析
- 2026年徽商银行总行管培生(徽星计划)校园招聘备考练习题库及答案解析
- 2025中国人民大学校园建设中心招聘1人考试参考试题及答案解析
- 初一政治试卷及答案
- 糖皮质激素合理应用知识测试题(附答案)
- 高血压护理业务学习试题附答案
- 2025下半年海南屯昌县(考核)招聘事业单位工作人员59人(第1号)考试参考试题及答案解析
- 2025山西晋中学院第二批招聘博士研究生22人备考练习题库及答案解析
- 2025年机关事务管理局招聘考试大纲
- 主城区积水易涝点排水防涝管网更新改造工程可行性分析报告(参考模板)
- 早期现代舞课件
- 碳固持效应研究-洞察及研究
- 口腔医保政策解读
- 2024浙江艺术职业学院单招《数学》模拟题库附答案详解(精练)
- 油菜病虫害防治课件
- 小学一年级体育上册教案表格式
- 基于主题语境的高中英语以读促写教学设计研究
- 2025年海南省高考物理试卷(含答案解析)
- GB/T 45817-2025消费品质量分级陶瓷砖
评论
0/150
提交评论