




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
题型练4大题专项(二)数列的通项、求和问题1.设数列an的前n项和为Sn,满足(1-q)Sn+qan=1,且q(q-1)0.(1)求an的通项公式;(2)若S3,S9,S6成等差数列,求证:a2,a8,a5成等差数列.2.已知等差数列an的首项a1=1,公差d=1,前n项和为Sn,bn=.(1)求数列bn的通项公式;(2)设数列bn前n项和为Tn,求Tn.3.(2018浙江,20)已知等比数列an的公比q1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列bn满足b1=1,数列(bn+1-bn)an的前n项和为2n2+n.(1)求q的值;(2)求数列bn的通项公式.4.已知等差数列an的前n项和为Sn,公比为q的等比数列bn的首项是,且a1+2q=3,a2+4b2=6,S5=40.(1)求数列an,bn的通项公式an,bn;(2)求数列的前n项和Tn.5.已知数列an满足a1=,且an+1=an-(nN*).(1)证明:12(nN*);(2)设数列的前n项和为Sn,证明:(nN*).6.已知数列an的首项为1,Sn为数列an的前n项和,Sn+1=qSn+1,其中q0,nN*.(1)若2a2,a3,a2+2成等差数列,求数列an的通项公式;(2)设双曲线x2-=1的离心率为en,且e2=,证明:e1+e2+en.题型练4大题专项(二)数列的通项、求和问题1.(1)解 当n=1时,由(1-q)S1+qa1=1,a1=1.当n2时,由(1-q)Sn+qan=1,得(1-q)Sn-1+qan-1=1,两式相减,得an=qan-1.又q(q-1)0,所以an是以1为首项,q为公比的等比数列,故an=qn-1.(2)证明 由(1)可知Sn=,又S3+S6=2S9,所以,化简,得a3+a6=2a9,两边同除以q,得a2+a5=2a8.故a2,a8,a5成等差数列.2.解 (1)在等差数列an中,a1=1,公差d=1,Sn=na1+d=,bn=(2)bn=2,Tn=b1+b2+b3+bn=2+=2+=2故Tn=3.解 (1)由a4+2是a3,a5的等差中项,得a3+a5=2a4+4,所以a3+a4+a5=3a4+4=28,解得a4=8.由a3+a5=20,得8=20,解得q=2或q=,因为q1,所以q=2.(2)设cn=(bn+1-bn)an,数列cn前n项和为Sn,由cn=解得cn=4n-1.由(1)可知an=2n-1,所以bn+1-bn=(4n-1)故bn-bn-1=(4n-5),n2,bn-b1=(bn-bn-1)+(bn-1-bn-2)+(b3-b2)+(b2-b1)=(4n-5)+(4n-9)+7+3.设Tn=3+7+11+(4n-5),n2,Tn=3+7+(4n-9)+(4n-5),所以Tn=3+4+4+4-(4n-5),因此Tn=14-(4n+3),n2,又b1=1,所以bn=15-(4n+3)4.解 (1)设an公差为d,由题意得解得故an=3n-1,bn=(2)+22n+1,Tn=+(22n+3-8)=5.证明 (1)由题意得an+1-an=-0,即an+1an,故an由an=(1-an-1)an-1,得an=(1-an-1)(1-an-2)(1-a1)a10.由00,故q=2.所以an=2n-1(nN*).(2)证明 由(1)可知,an=qn-1.所以双曲线x2-=1的离
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年AUTOSAR软件行业研究报告及未来行业发展趋势预测
- 2025年EDR行业研究报告及未来行业发展趋势预测
- 混合集成电路装调工理论知识考核试卷及答案
- 2025年仿石涂料行业研究报告及未来行业发展趋势预测
- 2025年二苯基氯化膦行业研究报告及未来行业发展趋势预测
- 铁合金湿法冶炼工基础知识考核试卷及答案
- 2025年边云协同行业研究报告及未来行业发展趋势预测
- 2025年弹性膜片联轴器行业研究报告及未来行业发展趋势预测
- 织袜工专业技能考核试卷及答案
- 野生动物管护工作业指导书
- 2025工会基础知识考试题库及参考答案
- 2025年安徽省宿州市辅警协警笔试笔试测试卷(含答案)
- 六年级上册语文1-8单元习作范文
- 2024广西公需课高质量共建“一带一路”谱写人类命运共同体新篇章答案
- 2025年国家法律职业资格考试《客观题卷一》模拟题及答案
- 冷板液冷标准化及技术优化白皮书
- 2025四川成都新都投资集团有限公司招聘23人笔试历年参考题库附带答案详解
- 中班健康《我会用伞》
- DG-TJ08-2461-2024 旧住房更新改造查勘标准
- 消化道早癌筛查健康宣教科普
- 事故隐患内部报告奖励制度培训
评论
0/150
提交评论