高中数学 第1部分 第三章 3.1 3.1.3 概率的基本性质课件 新人教A版必修3.ppt_第1页
高中数学 第1部分 第三章 3.1 3.1.3 概率的基本性质课件 新人教A版必修3.ppt_第2页
高中数学 第1部分 第三章 3.1 3.1.3 概率的基本性质课件 新人教A版必修3.ppt_第3页
高中数学 第1部分 第三章 3.1 3.1.3 概率的基本性质课件 新人教A版必修3.ppt_第4页
高中数学 第1部分 第三章 3.1 3.1.3 概率的基本性质课件 新人教A版必修3.ppt_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

理解教材新知 把握热点考向 应用创新演练 考点一 考点二 考点三 3 1随机事件的概率 第三章概率 3 1 3概率的基本性质 标号为1 2 3 4的4个球 从中任取1个 可得如下事件 a 标号为1 b 标号为3 c 标号为奇数 d 标号为偶数 e 标号大于2 问题1 事件a发生时 事件c一定发生吗 提示 一定发生问题2 只有a发生时c才发生吗 提示 不是 当且仅当a或b发生时事件c发生 问题3 当事件c和e都发生时哪些事件一定发生 提示 事件b一定发生问题4 事件c和事件d能同时发生吗 提示 不能同时发生 但必有一个发生 1 事件的关系与运算 事件a或事 件b发生 事件a发生 且事件b发生 a b 或a b a b 或ab 一定发生 不可能事件 b a 或a b a b 不可能事件 必然事件 2 概率的几个基本性质 1 概率的取值范围 2 的概率为1 的概率为0 3 概率加法公式为 如果事件a与b为互斥事件 则p a b 特例 若a与b为对立事件 则p a p a b p a b 0 1 必然事件 不可能事件 p a p b 1 p b 1 0 互斥事件与对立事件的判定 1 利用基本概念 互斥事件不可能同时发生 对立事件是互斥事件 且必须有一个要发生 2 利用集合的观点来判断 设事件a与b所含的结果组成的集合分别是a b 事件a与b互斥 即集合a b 事件a与b对立 即集合a b 且a b i 也即a ib或b ia 例1 判断下列给出的每对事件是否为互斥事件 是否为对立事件 并说明理由 从40张扑克牌 红桃 黑桃 方块 梅花点数从1 10各10张 中 任取一张 1 抽出红桃 与 抽出黑桃 2 抽出红色牌 与 抽出黑色牌 3 抽出的牌点数为5的倍数 与 抽出的牌点数大于9 思路点拨 可根据互斥事件与对立事件的定义理解或利用集合观点去判断 精解详析 1 是互斥事件 不是对立事件 理由是 从40张扑克牌中任意抽取1张 抽出红桃 和 抽出黑桃 是不可能同时发生的 所以是互斥事件 同时 不能保证其中必有一个发生 这是由于还可能抽出 方块 或者 梅花 因此 二者不是对立事件 2 既是互斥事件 又是对立事件 理由是 从40张扑克牌中任意抽取1张 抽出红色牌 与 抽出黑色牌 两个事件不可能同时发生 且其中必有一个发生 所以它们既是互斥事件 又是对立事件 3 不是互斥事件 当然不可能是对立事件 理由是 从40张扑克牌中任意抽取1张 抽出的牌点数为5的倍数 与 抽出的牌点数大于9 这两个事件可能同时发生 如抽得点数为10 因此 二者不是互斥事件 当然不可能是对立事件 一点通 判断事件间的关系时 一是要考虑试验的前提条件无论是包含 相等 还是互斥 对立 其发生的前提条件都是一样的 二是考虑事件的交事件和并事件 可考虑用venn图分析 对于较难判断的关系 也可列出全部结果 再进行分析 1 某小组有3名男生和2名女生 从中任选2名同学参加演讲比赛 那么互斥不对立的两个事件是 a 至少有1名男生与全是女生b 至少有1名男生与全是男生c 至少有1名男生与至少有1名女生d 恰有1名男生与恰有2名女生 解析 对于a 至少有1名男生指1男1女或两男 而全是女生是指2女 是互斥事件且是对立事件 对于b 至少有1名男生与全是男生不是互斥事件更不是对立事件 对于c 至少有1名男生与至少有1名女生不是互斥事件更不是对立事件 对于d 恰有1名男生指1男1女 而恰有2名女生指2女 故是互斥事件但不是对立事件 答案 d 2 从1 2 3 9这9个数中任取两数 其中 恰有一个是偶数和恰有一个是奇数 至少有一个是奇数和两个都是奇数 至少有一个是奇数和两个都是偶数 至少有一个是奇数和至少有一个是偶数 上述事件中 对立事件是 a b c d 解析 从1 2 3 9这9个数中任取两数 按所取的数的奇偶性有3类结果 一个奇数和一个偶数或两个奇数或两个偶数 则 不是互斥事件 中至少有一个是奇数与两个都是偶数不能同时发生 且必有一个发生 是对立事件 答案 c 思路点拨 本题应先判断事件 3个球中既有红球又有白球 所包含的结果是什么 分别计算出每个基本事件发生的概率 再利用概率的加法公式进行计算 一点通 1 当一个事件包含几种情况时 可把事件转化为几个互斥事件的并事件 再利用概率的加法公式计算 2 使用概率加法公式p a b p a p b 时 必须判断a b是互斥事件 3 在第3 6路公共汽车的一个停靠站 假定这个车站只能停靠一辆公共汽车 有一位乘客需在5分钟之内乘上公共汽车赶到厂里 他可乘3路或6路公共汽车到厂里 已知3路车 6路车在5分钟之内到此车站的概率分别为0 20和0 60 则该乘客在5分钟内能乘上所需车的概率为 a 0 20b 0 60c 0 80d 0 12解析 由车站只停靠一辆公共汽车 所以3路车停靠与6路车停靠为互斥事件 由互斥事件加法公式有0 20 0 60 0 80 答案 c 4 向假设的三个相邻的军火库投掷一颗炸弹 炸中第一个军火库的概率为0 025 炸中其余两个军火库的概率各为0 1 只要炸中一个 另两个也要发生爆炸 则军火库发生爆炸的概率 解 设a b c分别表示炸中第一 第二 第三军火库这三个事件 于是p a 0 025 p b p c 0 1 又设d表示军火库爆炸这个事件 则有d a b c 其中a b c是互斥事件 因为只投掷了一颗炸弹 不会同时炸中两个或三个军火库 p d p a p b p c 0 025 0 1 0 1 0 225 例3 据统计 某储蓄所一个窗口等候的人数及相应概率如下表 1 求至多2人排队等候的概率 2 求至少2人排队等候的概率 思路点拨 利用互斥事件的概率公式或对立事件求概率 精解详析 记在窗口等候的人数为0 1 2分别为事件a b c 则a b c两两互斥 1 至多2人排队等候的概率是p a b c p a p b p c 0 1 0 16 0 3 0 56 2 至少2人排队等候的反面是 等候人数为0或1 而等候人数为0或1的概率为p a b p a p b 0 1 0 16 0 26 故至少2人排队等候的概率为1 0 26 0 74 一点通 求 至多 至少 型的概率问题时 先理解题意 明确所求事件包含哪些事件 再利用互斥事件的概率加法公式或对立事件的概率公式解决 5 2012 凌海高一检测 从一箱产品中随机地抽取一件 设事件a 抽到一等品 事件b 抽到二等品 事件c 抽到三等品 且已知p a 0 65 p b 0 2 p c 0 1 则事件 抽到的不是一等品 的概率为 a 0 7b 0 65c 0 35d 0 3 解析 由已知得p 抽到的不是一等品 1 p a 1 0 65 0 35 答案 c 6 某同学军训时打靶一次击中10环 9环 8环的概率分别是0 3 0 3 0 2 那么他射击一次不够8环的概率是 解析 设击中10环 9环 8环的事件分别为a b c 不够8环的事件为d 则事件a b c两两互斥 p d 1 p a b c 1 p a p b p c 1 0 3 0 3 0 2 0 2 答案 0 2 7 在数学考试中 小明的成绩在90分以上的概率是0 18 在80 89分的概率是0 51 在70 79分的概率是0 15 在60 69分的概率是0 09 60分以下的概率是0 07 计算 1 小明在数学考试中取得80分以上成绩的概率 2 小明考试及格的概率 解 分别记小明的成绩 在90分以上 在80 89分 在70 79分 在60 69分 为事件b c d e 这四个事件彼此互斥 1 小明的成绩在80分以上的概率是p b c p b p c 0 18 0 51 0 69 2 法一 小明考试及格的概率是p b c d e p b p c p d p e 0 18 0 51 0 15 0 09 0 93 法二 小明考试不及格的概率是0 07 所以 小明考试及格的概率是p a 1 0 07 0 93 1 互斥事件和对立事件都是针对两个事件而言的 它们两者之间既有区别又有联系 在一次试验中 两个互斥事件有可能都不发生 也可能有一个发生 但不可能两个都发生 而两个对立事件必有一个发生 但是不可能两个事件同时发生 也不可能两个事件都不发生 所以两个事件互斥 它们未必对立 反之两个事件对立 它们一定互斥 2 互斥事件的概率加法公式是一个很基本的计算公式 解题时要在具体的情景中判断各事件间是否互斥 只有互斥事件才能用概率加法公式p a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论