




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 chapter2 probability statistics andtraffictheories copyright 2002 dr dharmap agrawalanddr qing anzeng allrightsreserved 2 outline introductionprobabilitytheoryandstatisticstheoryrandomvariablesprobabilitymassfunction pmf probabilitydensityfunction pdf cumulativedistributionfunction cdf expectedvalue nthmoment nthcentralmoment andvariancesomeimportantdistributionstraffictheorypoissonarrivalmodel etc basicqueuingsystemslittle slawbasicqueuingmodels 3 introduction severalfactorsinfluencetheperformanceofwirelesssystems densityofmobileuserscellsizemovingdirectionandspeedofusers mobilitymodels callrate calldurationinterference etc probability statisticstheoryandtrafficpatterns helpmakethesefactorstractable 4 probabilitytheoryandstatisticstheory randomvariables rvs letsbesampleassociatedwithexperimentexisafunctionthatassociatesarealnumbertoeachs srvscanbeoftwotypes discreteorcontinuousdiscreterandomvariable probabilitymassfunction pmf continuousrandomvariable probabilitydensityfunction pdf 5 discreterandomvariables inthiscase x s containsafiniteorinfinitenumberofvaluesthepossiblevaluesofxcanbeenumeratede g throwa6sideddiceandcalculatetheprobabilityofaparticularnumberappearing 1 2 3 4 6 0 1 0 3 0 1 0 1 0 2 0 2 5 probability number 6 discreterandomvariables theprobabilitymassfunction pmf p k ofxisdefinedas p k p x k fork 0 1 2 where1 probabilityofeachstateoccurring0 p k 1 foreveryk 2 sumofallstates p k 1 forallk 7 continuousrandomvariables inthiscase xcontainsaninfinitenumberofvaluesmathematically xisacontinuousrandomvariableifthereisafunctionf calledprobabilitydensityfunction pdf ofxthatsatisfiesthefollowingcriteria 1 f x 0 forallx 2 f x dx 1 8 cumulativedistributionfunction appliestoallrandomvariablesacumulativedistributionfunction cdf isdefinedas fordiscreterandomvariables forcontinuousrandomvariables 9 probabilitydensityfunction thepdff x ofacontinuousrandomvariablexisthederivativeofthecdff x i e 10 discreterandomvariablesexpectedvaluerepresentedbyeoraverageofrandomvariablenthmomentnthcentralmomentvarianceorthesecondcentralmoment expectedvalue nthmoment nthcentralmoment andvariance 2 var x e x e x 2 e x2 e x 2 11 expectedvalue nthmoment nthcentralmoment andvariance 1 2 3 4 5 6 0 1 0 3 0 1 0 1 0 2 0 2 e x 0 166 12 continuousrandomvariableexpectedvalueormeanvaluenthmomentnthcentralmomentvarianceorthesecondcentralmoment expectedvalue nthmoment nthcentralmoment andvariance 2 var x e x e x 2 e x2 e x 2 13 someimportantdiscreterandomdistributions poissone x andvar x geometrice x 1 1 p andvar x p 1 p 2 p x k p 1 p k 1 wherepissuccessprobability 14 someimportantdiscreterandomdistributions binomialoutofndice exactlykdicehavethesamevalue probabilitypkand n k dicehavedifferentvalues probability 1 p n k foranykdiceoutofn 15 someimportantcontinuousrandomdistributions normale x andvar x 2 16 someimportantcontinuousrandomdistributions uniforme x a b 2 andvar x b a 2 12 17 someimportantcontinuousrandomdistributions exponentiale x 1 andvar x 1 2 18 multiplerandomvariables therearecaseswheretheresultofoneexperimentdeterminesthevaluesofseveralrandomvariablesthejointprobabilitiesofthesevariablesare discretevariables p x1 xn p x1 x1 xn xn continuousvariables cdf fx1x2 xn x1 xn p x1 x1 xn xn pdf 19 independenceandconditionalprobability independence therandomvariablesaresaidtobeindependentofeachotherwhentheoccurrenceofonedoesnotaffecttheother thepmffordiscreterandomvariablesinsuchacaseisgivenby p x1 x2 xn p x1 x1 p x2 x2 p x3 x3 andforcontinuousrandomvariablesas fx1 x2 xn fx1 x1 fx2 x2 fxn xn conditionalprobability istheprobabilitythatx1 x1giventhatx2 x2 thenfordiscreterandomvariablestheprobabilitybecomes andforcontinuousrandomvariablesitis 20 bayestheorem atheoremconcerningconditionalprobabilitiesoftheformp x y read theprobabilityofx giveny iswherep x andp y aretheunconditionalprobabilitiesofxandyrespectively 21 importantpropertiesofrandomvariables sumpropertyoftheexpectedvalueexpectedvalueofthesumofrandomvariables productpropertyoftheexpectedvalueexpectedvalueofproductofstochasticallyindependentrandomvariables 22 importantpropertiesofrandomvariables sumpropertyofthevariancevarianceofthesumofrandomvariablesiswherecov xi xj isthecovarianceofrandomvariablesxiandxjandifrandomvariablesareindependentofeachother i e cov xi xj 0 then 23 importantpropertiesofrandomvariables distributionofsum forcontinuousrandomvariableswithjointpdffxy x y andifz x y thedistributionofzmaybewrittenaswhere zisasubsetofz foraspecialcasez x yifxandyareindependentvariables thefxy x y fx x fy y ifbothxandyarenonnegativerandomvariables thenpdfistheconvolutionoftheindividualpdfs fx x andfy y 24 centrallimittheorem thecentrallimittheoremstatesthatwheneverarandomsample x1 x2 xn ofsizenistakenfromanydistributionwithexpectedvaluee xi andvariancevar xi 2 wherei 1 2 n thentheirarithmeticmeanisdefinedby 25 centrallimittheorem thesamplemeanisapproximatedtoanormaldistributionwithe sn andvar sn 2 n thelargerthevalueofthesamplesizen thebettertheapproximationtothenormal thisisveryusefulwheninferencebetweensignalsneedstobeconsidered 26 poissonarrivalmodel apoissonprocessisasequenceofevents randomlyspacedintime forexample customersarrivingatabankandgeigercounterclicksaresimilartopacketsarrivingatabuffer therate ofapoissonprocessistheaveragenumberofeventsperunittime overalongtime 27 propertiesofapoissonprocess propertiesofapoissonprocessforatimeinterval 0 t theprobabilityofnarrivalsintunitsoftimeisfortwodisjoint nonoverlapping intervals t1 t2 and t3 t4 i e t1 t2 t3 t4 thenumberofarrivalsin t1 t2 isindependentofarrivalsin t3 t4 28 interarrivaltimesofpoissonprocess interarrivaltimesofapoissonprocesswepickanarbitrarystartingpointt0intime lett1bethetimeuntilthenextarrival wehavep t1 t p0 t e tthusthecumulativedistributionfunctionoft1isgivenbyft1 t p t1 t 1 e tthepdfoft1isgivenbyft1 t e ttherefore t1hasanexponentialdistributionwithmeanrate 29 exponentialdistribution similarlyt2isthetimebetweenfirstandsecondarrivals wedefinet3asthetimebetweenthesecondandthirdarrivals t4asthetimebetweenthethirdandfourtharrivalsandsoon therandomvariablest1 t2 t3 arecalledtheinterarrivaltimesofthepoissonprocess t1 t2 t3 areindependentofeachotherandeachhasthesameexponentialdistributionwithmeanarrivalrate 30 memorylessandmergingproperties memorylesspropertyarandomvariablexhasthepropertythat thefutureisindependentofthepast i e thefactthatithasn thappenedyet tellsusnothingabouthowmuchlongeritwilltakebeforeitdoeshappen mergingpropertyifwemergenpoissonprocesseswithdistributionsfortheinterarrivaltimes1 e itwherei 1 2 nintoonesingleprocess thentheresultisapoissonprocessforwhichtheinterarrivaltimeshavethedistribution1 e twithmean 1 2 n 31 basicqueuingsystems whatisqueuingtheory queuingtheoryisthestudyofqueues sometimescalledwaitinglines canbeusedtodescriberealworldqueues ormoreabstractqueues foundinmanybranchesofcomputerscience suchasoperatingsystems basicqueuingtheoryqueuingtheoryisdividedinto3mainsections trafficflowschedulingfacilitydesignandemployeeallocation 32 kendall snotation d g kendallin1951proposedastandardnotationforclassifyingqueuingsystemsintodifferenttypes accordinglythesystemsweredescribedbythenotationa b c d ewhere 33 kendall snotation aandbcantakeanyofthefollowingdistributionstypes 34 little slaw assumingaqueuingenvironmenttobeoperatinginastablesteadystatewhereallinitialtransientshavevanished thekeyparameterscharacterizingthesystemare themeansteadystateconsumerarrivaln theaverageno ofcustomersinthesystemt themeantimespentbyeachcustomerinthesystemwhichgivesn t 35 markovprocess amarkovprocessisoneinwhichthenextstateoftheprocessdependsonlyonthepresentstate irrespectiveofanypreviousstatestakenbytheprocess theknowledgeofthecurrentstateandthetransitionprobabilitiesfromthisstateallowsustopredictthenextstate 36 birth deathprocess specialtypeofmarkovprocessoftenusedtomodelapopulation or no ofjobsinaqueue if atsometime thepopulationhasnentities njobsinaqueue thenbirthofanotherentity arrivalofanotherjob causesthestatetochangeton 1 ontheotherhand adeath ajobremovedfromthethequeueforservice wouldcausethestatetochangeton 1 anystatetransitionscanbemadeonlytooneofthetwoneighboringstates 37 thestatetransitiondiagramofthecontinuousbirth deathprocess statetransitiondiagram 0 1 2 n 1 n n 1 0 1 1 2 2 3 n 2 n 1 n 1 n n n 1 n 1 n 2 38 m m 1 orm m 1queuingsystem whenacustomerarrivesinthissystemitwillbeservediftheserverisfree otherwisethecustomerisqueued inthissystemcustomersarriveaccordingtoapoissondistributionandcompetefortheserviceinafifo firstinfirstout manner servicetimesareindependentidenticallydistributed iid randomvariables thecommondistributionbeingexponential 39 queuingmodelandstatetransitiondiagram them m 1 queuingmodel thestatetransitiondiagramofthem m 1 queuingsystem 40 equilibriumstateequations ifmeanarrivalrateis andmeanservicerateis i 0 1 2 bethenumberofcustomersinthesystemandp i bethestateprobabilityofthesystemhavingicustomers fromthestatetransitiondiagram theequilibriumstateequationsaregivenby 41 trafficintensity weknowthatthep 0 istheprobabilityofserverbeingfree sincep 0 0 thenecessaryconditionforasystembeinginsteadystateis thismeansthatthearrivalratecannotbemorethantheservicerate otherwiseaninfinitequeuewillformandjobswillexperienceinfiniteservicetime 42 queuingsystemmetrics 1 p 0 istheprobabilityoftheserverbeingbusy therefore wehavep i i 1 theaveragenumberofcustomersinthesystemisls theaveragedwelltimeofcustomersisws 43 queuingsystemmetrics theaveragequeuinglengthis theaveragewaitingtimeofc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 呼叫中心客服岗前培训体系
- 中考考务培训解读
- 抽沙合同 协议书
- 美容干股合同协议书
- 转让场地合同协议书
- 代人起草合同协议书
- 美甲店股东合同协议书
- 增加股东协议书合同
- 舞蹈转让合同协议书
- 抵押手机合同协议书
- 2025-2030中国无烟原煤行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- GB/T 32960.3-2025电动汽车远程服务与管理系统技术规范第3部分:通信协议及数据格式
- 2024年江苏省劳动关系研究院招聘考试真题
- 突发性聋诊疗指南(2025版)
- 2025年电子信息工程师职业资格考试试卷及答案
- 2025年广东松山职业技术学院单招职业倾向性测试题库
- 创新教学策略在高中物理课堂的应用
- 甘肃武威事业单位招聘考试高频题库带答案2025年
- 2025年全国国家版图知识竞赛题库及答案
- 机械制造及非标零部件加工项目突发环境事件应急预案
- 9.1科学立法 课件高中政治统编版必修三政治与法治
评论
0/150
提交评论