初中数学优质课教案.docx_第1页
初中数学优质课教案.docx_第2页
初中数学优质课教案.docx_第3页
初中数学优质课教案.docx_第4页
免费预览已结束,剩余21页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中数学优质课教案【篇一:初中数学优秀教学案例】 初中数学优秀教学案例:相反数课堂教学实录及反思 复制链接 相反数课堂教学实录及反思 课堂实录: 一、发散思维,引出课题 师:请同学们自己找出一条理由,将4,3,4,3分成两组 生1:我将4、3分在一组,将4、3分为另一组,就是将负数分为一组,正数分为另一组 师:简单地说,就是将符号相同的放在一组 生2:我将4,4分在一组,将3,3分为另一组,就是把数是否相同作为分组的依据 师:你的意思是4与4相同,所以把它们放在一组? 生2:不是那个意思,我指的是4与4中都有4这个数,也就是符号后面的数相同,所以把它们放在一组 师:什么数相同一定要说明,否则容易引起误会(板书:符号后面的数) 生3:我把4与3分在一组,把4与3分在另一组理由是两个数的符号不同,符号后面的数也不相同 二、比较概括,提炼定义 师:一般地,一个数由两部分构成,即符号和刚才提到的“符号后面的数”,考虑这两个方面,大家也就采用了三种不同的分法两个方面都不相同是一种分法,把“符号”是否相同作为分组的依据,得到的是已经学过的一组正数和一组负数;把“符号后面的数”是否相同作为分组的依据,得到了4与4、3与3这样成对的数,那么它们又应该叫什么数呢? 生4:相反数 师:你是怎样想到把它们叫相反数的呢? 生4:看书知道的(众笑) 师:你先预习了今天的内容,知道了像4与4这样一对数是相反数(板书课题),不知是否想过,为什么叫相反数而不叫别的数呢? 生4:没有想过 师:现在请大家思考一下 生5:一个正数,一个负数,表示的意义相反,所以叫相反数 师:说出了最重要原因不过照这种说法, 4与3也是相反数,是吗? 生(众):不是,它们符号后面的数不同 师:分析的有道理现在请大家用尽可能简单的一句话说明什么样的两个数叫相反数 生6:符号不同、符号后面的数相同的两个数叫相反数(板书) 生7:一个数前面添上不同的符号后得到的两个数叫相反数(板书) 师:请你举例说明 生7:如5前面添上“”“”得到的5和5是相反数 师:说的都很好,用简洁的语言把数的两个部分的关系都讲清楚了,课本上说“只有符号不同的两个数叫做互为相反数”(板书),这与刚才两个同学的说法一致吗? 生(众):是一致的“只有符号不同”说明其它的都相同,包含了“符号后面的数相同”的意思 师:很好,挖掘出了言外之义关于什么叫相反数,谁还有新的说法? 生8:只有符号后面的数相同的两个数叫做互为相反数(板书) 师:反应很快, “只有符号后面的数相同”的言外之意是“符号不同”,与课本上的说法是一致的由此可见,同样的意思,可以用不同的语言来表达,在数学学习中,对此我们应该多加注意需要说明的是,课本用“只有符号不同”包含“符号后面的数相同”的意思,好处是使相反数的概念更精炼,同时也避免了使用“符号后面的数”这一说法容易引起的误会,关于这一点,以后我们还将看到 关于相反数,谁有什么疑问,请提出来 生9:为什么说“互为相反数”? 师:“互”就是“相互”的意思,如4是4的相反数,也可以说4是4的相反数,即4与4互为相反数请大家一起把“3与3互为相反数”的意思说具体一点 生(众):3是3的相反数,3是3的相反数 师:谁还有问题吗? 生10:我的问题是零有没有相反数? 师:你怎么想起了这样一个问题呢? 生10:前面提到的相反数总是一正一负,我就想到是否遗漏了零 师:老师真为你高兴,你想到了一个不能遗漏的重要问题关于零有没有相反数,请大家不要急于看课本,先思考一会,然后相互交流各自的看法 生:(思考,讨论) 师:先请一个认为零没有相反数的同学说明理由 生11:因为相反数总是一正一负符号不同,而零既不是正数也不是负数,所以零没有相反数 师:有道理那么认为零有相反数的理由又是什么呢? 生12:0也可以写成0和0比如说某人做生意不赚也不亏,也可以说赚了0元,或说亏了0元,即可记作0元和0元,所以0=0=0,0的相反数0,0的相反数就是0 师:也有道理从表面上看,0与0互为相反数好象不符合符号不同这个要求,但是象生12举的例子中提到0和0,并且0=0=0,也是可以的,所以,关于特殊的零,课本上特别指出(板书):0的相反数是0 口答练习:说出下列各数的相反数:7,0.5,0,6,1.5 例 请在数轴上标出表示4的相反数的点. (老师有意隐藏了三角板、圆规,板演学生凭眼估计画出了表示4的点) 师:请大家判断,表示4的点位置是否正确? 生(众):好象偏右了一点,应该还在左边一些 师:正确的点应该在什么样的位置? 生13:4到原点的距离与4到原点的距离相等 师:还补充几个字就好了 生14:表示4的点到原点的距离与表示4的点到原点的距离相等 师:非常准确不是数到原点的距离,而是点到点的距离,表示数的点到原点的距离谁到黑板上来检验表示4的点的位置是否正确? (一名学生利用三角板测量出了表示4的点的正确位置,老师用圆规又检验了一次) 练习:把6,5,0,2.5和它们的相反数都表示在数轴上 师:练习中,我们发现:除零外,在数轴上表示相反数的点分别位于原点的左右两边为什么除零外表示相反数的点一定会分别位于原点的左右两边呢? 生15:因为除零外,两个相反数总是一负一正,所以表示相反数的点分别位于原点的左右两边 师:分析得对谁能用相反数的概念中的某些词语来说明这个问题? 生16:就是“符号不同” 师:很好,因为“符号不同”,所以表示相反数的点分别位于原点的左右两边当我们用眼观察图形,看出了相反数的一个特点后,一定要进一步开动大脑思考为什么会有这样的特点,而往往从概念中就能找到原因从数轴上看,相反数的另外一个特点是:表示每一对相反数的点到原点的距离相等(板书)为什么表示相反数的两点到原点的距离相等? 生17:相反数的概念中“只有符号不同”包含着其它的相同,就是“符号后面的数相同”,在数轴上就是距离相等 师:很好,很快就掌握了老师提到的分析问题的方法关于相反数,我们是从“符号”和“符号后面的数”两个方面去研究的,这两方面的特点既包含在相反数的概念中,又体现在数轴上,将二者结合起来考虑将有助于以后的数学学习 师:在前面的分析中,我们总是将特殊的的零排除在外请大家回顾一下,到现在为止,关于零的特殊性,表现在哪些方面? 生众:零既不是正数,也不是负数;零的相反数还是零;零不能作除数 师:前面提到的三个方面中,有哪两个方面是联系在一起的? 生18:前面两个方面是联系在一起的因为零既不是正数,也不是负数,所以零的相反数还是零 师:说的好,希望大家以后能向今天一样开动脑筋思考问题请看练习 练习及解答(略) 教学反思:本节课是一节概念及概念应用课教科书以现两个思考形式呈现本节的内容 为了顺利完成教学任务,我先以发散思维的形式,让学生感受数字的变化,一下子把学生的注意力全集中在课堂上带有激励性的语言,使数学积极参与到对问题的思考之中,符合七年级学生的年龄特点,带着好奇心和求知欲,学生很快进入学习状态 在对相反数概念的提炼及应用的过程中,学生通过探究、合作、交流,以及师生有目的的对话,使学生对相反数有了更深的理解,培养了学生良好的思维品质,并用数学知识进行了检验,学生参与积极,思维活跃,兴趣高通过对0有没有相反思的讨论,我又设计了一个开放问题,让学生自己解释有没有的原因,它具有思维的跨度,目的是让学生经历从发现、推理、验证到判断这一重要数学探究过程,同时这一问题也是相反数概念的外延,达到巩固新知的目的 本节课我感到不足的地方是,学生参与面不够大,部分学生在活动中没有积极思考,不够大胆主动地发表自己的观点,担心自己说错了会让老师和同学们笑自己 通过本节课我得到这样一个启示: (一)导入新课要结合实例良好的开端是成功的一半,引入阶段正处在一堂课的起始阶段,处理的是否恰当,直接影响到学生学习的情绪,以及思维的活跃程度结合学生身边的实例导入新课,不但可提高学生的学习兴趣,激发求知的内驱力,而且可使所要学习的数学问题具体化,形象化 (二)加深理解新知要联系生活实际在新知的教学时,如果能结合学生的日常生活,创设学生熟悉与感兴趣的具体生活活动情况,就能引导学生通过联想、类比,沟通从具体的感性实践到抽象概括的道路,加深对新知的理解 (三)巩固新知要在生活实践应用中数学来源于实践,又服务于实践,为此在数学教学中,我们要创设运用数学知识的条件给学生以实际活动的机会,使学生在实践活动中加深对新学知识的巩固 今后我要善于从学生已有的生活经验出发,创设生活中生动、有趣的的情境,强化感性认识,引导学生在情境中观察、操作、交流,使学生体验数学与日常生活的密切联系,感受数学在生活中的作用;加深对数学的理解,并运用数学知识解决现实问题同时,鼓励学生多角度思考问题,优化解题策略【篇二:初中数学优秀教案】 初中数学优秀教案 2.7有理数的加减混合运算 一、 教材内容及设置依据 【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。 【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。 二、教材的地位和作用 本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了类比依据。也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。 三、对重点、难点的处理 【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:1、知识巩固型 2、实际应用型 3、方法多变型 4、知识拓展型等。 【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会) 四、关于教学方法的选用 根据本节课的内容和学生的实际水平,本节课可采用的方法:1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。 2 、引导发现法:它符合辩证唯物主义中内因与外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导启发,充分调动学生学习的主动性。 3、小组合作、探究讨论:通过合作讨论,使学生形成一个“学习共同体”,在这个共同体内相互交流、相互沟通、相互启发、相互补充,分享彼此的思考、经验和知识,交流彼此的情感、体验和观念,共同体验成功的喜悦,使学生体会到集体的力量,形成合作的意识,产生合作的愿望。 五、关于学法的指导 “授人以鱼,不如授人以渔”,在教給学生知识的同时,要教给他们好的学习方法,让他们“会学习”在本节课的教学中,在提出问题后,要鼓励学生分析、探索、讨论,确定出问题解决的办法。通过小组探究交流,得到解决问题的不同方法,开拓了思路,培养了思维能力。同时意识到:数学是生活实际中的数学、大自然中的数学,萌生了用数学解决实际问题的意识、愿望。六、课时安排:1课时 教学程序: 一、复习铺垫: 首先利用多媒体出示一组有关有理数的加法、减法的题目,让学生进行速算比赛,看谁做的又对又快。 1、45(23) 2、9(5) 3、28(37)4、(13 )0 5、(29)(31) 6、(16)(12)24(18) 7、1.6(1.2)2.5 8、(42)57(84)(23) 从四排学生中个推选一名学生代表板演6、7、8、题。 通过比赛的方式,符合学生的心理特点,迎合了学生好胜的心理,激起了学生学习的内在动力,激发了学习的兴趣。 然后教师与学生一起对题目进行评判,对优胜的学生进行表扬,对其他学生加以鼓励,使他们意识到“胜败乃兵家常事”,关键要有信心,要有高昂的斗志。通过练习,学生已在不知不觉中复习了有理数的加法、减法法则,特别是减法法则,加深了印象,这符合教学论中的巩固性原则,为后面学习有理数的加减混合运算奠定了基础。二、新知探索: 1、 出示引例1: 一架飞机作特技表演,起飞后的高度变化如下表: 高度变化 记作 上升4.5千米 4.5千米 下降3.2千米 3.2千米 上升1.1千米 1.1千米 下降1.4千米 1.4千米 此时飞机比起飞点高了多少米? 让学生分组探究讨论,让学生发表自己的见解,不难得出两种算法: 4.5(3.2)1.1(1.4) 4.53.21.11.4 1.31.1(1.4) 1.31.11.4 2.4(1.4) 2.41.4 1千米 1千米 教师随之提出问题:比较以上两种算法,你发现了什么?通过学生的合作讨论、教师的引导、规纳、总结可得出:加减法混合运算可以统一成加法;加法运算可以写成省略括号及前面加号的形式。使学生在解决问题的过程中体会到“代数和“的含义。这里不要求出现“代数和”的名称。通过小组合作,探究讨论,让每一个学【篇三:实用初中数学优秀教案大全】 实用初中数学优秀教案大全 课题:二元一次方程 一、教学目标: 1.理解二元一次方程及二元一次方程的解的概念; 2学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解; 3学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示; 4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育. 二、教学重点、难点: 重点:二元一次方程的意义及二元一次方程的解的概念. 难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程. 三、教学方法与教学手段: 通过与一元一次方程的比较,加强学生的类比的思想方法; 通过合作学习,使学生认识数学是根据实际的需要而产生发展的观点. 四、教学过程: 1.情景导入: 新闻链接:桐乡70岁以上老人可领取生活补助, 得到方程:80a+150b=902 880. 2.新课教学: 引导学生观察方程80a+150b=902 880与一元一次方程有异同? 得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程. 做一做: (1)根据题意列出方程: 小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价.设苹果的单价x元/kg , 梨的单价y元/kg ; 在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程: . (2)课本p80练习2. 判定哪些式子是二元一次方程方程. 合作学习: 活动背景爱心满人间记求是中学学雷锋、关爱老人志愿者活动. 问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人. 团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行? 为什么? 把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等? 由学生检验得出代入方程后,能使方程两边相等. 得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解. 并提出注意二元一次方程解的书写方法. 试一试: 检验下列各组数是不是方程2x=y+1的解: 是方程的解,每个学生再找出方程的一个解,引导学生得到结论:一般情况下,二元一次方程有无数个解.3.合作学习: 给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值; 接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便? 出示例题:已知二元一次方程 x+2y=8. (1)用关于y的代数式表示x; (2)用关于x的代数式表示y; (3)求当x= 2,0,-3时,对应的y的值,并写出方程x+2y=8的三个解. (当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快) 4.课堂练习: (1)已知:5xm-2yn=4是二元一次方程,则m+n=; (2)二元一次方程2x-y=3中,方程可变形为y= 当x=2时,y= ; (3) 已知 是关于x,y的方程2x+ay=5的一个解,则a= . 5.你能解决吗? 小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案. 6.课堂小结: (1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式); (2)二元一次方程解的不定性和相关性; (3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式. 7.布置作业:(1)教材p82; (2)作业本. 教学设计意图: 依照课程标准,通过分析教材中教学情境设计和例习题安排的意图,在此基础上依据学生实际,制订了本堂课的教学目标,教学重点和难点,课堂教学的设计始终围绕这教学重点和难点展开. 在充分理解教材编写意图、教学要求和教学理念的基础上,根据学生实际,从学生的已有经验出发,创设了教学情境:关心老人,突出情感主线,并贯穿整个教学. 并对教学内容进行适当的重组、补充和加工等,创造性地使用了教材. 所选择的例习题都体现实际问题数学化的思想,让学生感受到数学的魅力. 这两个方面的设计贯穿整堂课,把知识内容和情感体验自然连贯起来. 其次,在教学过程设计中,体现了让学生展示解决问题的思维过程,通过几个合作学习,激发学生主动去接触问题,从而达到解决问题的目的. 重视学生学习过程中的自我评价和生生间的相互评价,关注学生对解题思路回顾能力的培养. 二元一次方程概念的教学中,通过与一元一次方程的类比的方法,使得学生加深印象. 在突破难点的设计上,通过游戏的形式激发学生的学习兴趣,并在选题时,通过降低例题的难度,使学生迅速掌握用关于一个未知数的代数式表示另一个字母的方法,体会运用这种方法的可使求二元一次方程求解更简便. 41二元一次方程教学设计 衢州市兴华中学 徐勇 一、 教材的地位与作用 二元一次方程是九年义务教育课程标准实验教科书浙教版教材七年级下册第四章二元一次方程组的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。 二、 教学目标 (一)知识与技能: 1.了解二元一次方程概念; 2.了解二元一次方程的解的概念和解的不唯一性; 3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。 (二)数学思考: 体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。 (三)问题解决: 初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。 (四)情感态度: 培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。 三、 教学重点与难点 教学重点:二元一次方程及其解的概念。 教学难点:二元一次方程的概念里含未知数的项的次数的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。 四、 教法与学法分析 教法:情境教学法、比较教学法、阅读教学法。 学法:阅读、比较、探究的学习方式。 五、 教学过程 (一) 创设情境,引入新课 从学生熟悉的姚明受伤事件引入。 师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。 (1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球) 师:能用方程解决吗?列出来的方程是什么方程? (2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球) 师:这个问题能用一元一次方程解决吗?,你能列出方程吗? 设姚明投进了x 个两分球,罚进了y个球,可列出方程_。 (3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。你知道他分别投进几个两分球、几个三分球吗? 设易建联投进了x个两分球,y个三分球,可列出方程_。 师:对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗? 从而揭示课题。 (设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的导火索,引起学生的学习兴趣,以我要学的主人翁姿态投入学习,而且会学、乐学。)(二) 探索交流,汲取新知 1、 概念思辩,归纳二元一次方程的特征 师:那到底什么叫二元一次方程?(学生思考后回答) 师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答) 师:根据概念,你觉得二元一次方程应具备哪几个特征? 活动:你自己构造一个二元一次方程。 快速判断:下列式子中哪些是二元一次方程? (设计意图:这一环节是本课设计的重点,为加深学生对含有未知数的项的次数的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对项的次数的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把项的次数形象化 。在归纳二元一次方程特征的时候,引导学生理解含有未知数的项的次数都是一次实际上是说明方程的两边是整式。在判断的过程中,是在书本的基础上补充的,是让学生先认识这种形式,后面出现用关于一个未知数的代数式表示另一个未知数实际上是方程变形;是方程两边都出现了x,强化概念里两个未知数是不一样的;是再次理解项的次数。) 2、 二元一次方程解的概念 师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗? 师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的) 利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上的记法) 使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。 (设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的是让学生在记法上体会一对未知数的取值的真正含义。) 3、 二元一次方程解的不唯一性 对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗? 师:这些解你们是如何算出来的? (设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。) 4、 如何去求二元一次方程的解 例 已知方程3x+2y=10 (1)当x=2时,求所对应的y 的值; (2)取一个你自己喜欢的数作为x的值,求所对应的y 的值; (3)用含x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论