2019_2020学年高中数学第2章推理与证明2.1.2演绎推理讲义新人教B版.docx_第1页
2019_2020学年高中数学第2章推理与证明2.1.2演绎推理讲义新人教B版.docx_第2页
2019_2020学年高中数学第2章推理与证明2.1.2演绎推理讲义新人教B版.docx_第3页
2019_2020学年高中数学第2章推理与证明2.1.2演绎推理讲义新人教B版.docx_第4页
2019_2020学年高中数学第2章推理与证明2.1.2演绎推理讲义新人教B版.docx_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.1.2演绎推理学 习 目 标核 心 素 养1理解演绎推理的含义(重点)2掌握演绎推理的模式,会利用三段论进行简单的推理(重点、易混点)通过演绎推理的学习、提升学生的逻辑推理、数学运算素养.一、演绎推理1定义根据概念的定义或一些真命题,依照一定的逻辑规则得到正确结论的过程,叫做演绎推理2特征当前提为真时,结论必然为真二、三段论1三段论推理(1)三段论推理是演绎推理的一般模式(2)三段论的构成:大前提:提供一般性原理;小前提:指出一个特殊的对象;结论:结合大前提和小前提,得出一般性原理和特殊对象之间的内在联系(3)“三段论”的常用格式大前提:M是P;小前提:S是M;结论:S是P.2演绎推理的常见模式(1)三段论推理(2)传递性关系推理用符号表示推理规则是“如果aRb,bRc,则aRc”,其中“R”表示具有传递性的关系(3)完全归纳推理把所有情况都考虑在内的演绎推理规则叫做完全归纳推理1判断(正确的打“”,错误的打“”)(1)“三段论”就是演绎推理()(2)演绎推理的结论是一定正确的()(3)演绎推理是由特殊到一般再到特殊的推理()答案(1)(2)(3)2正弦函数是奇函数,f(x)sin(x21)是正弦函数,因此f(x)sin(x21)是奇函数,以上推理中“三段论”中的_是错误的解析f(x)sin(x21)不是正弦函数,故小前提错误答案小前提3下列几种推理过程是演绎推理的是_(填序号)两条平行直线与第三条直线相交,内错角相等,如果A和B是两条平行直线的内错角,则AB;金导电,银导电,铜导电,铁导电,所以一切金属都导电;由圆的性质推测球的性质;科学家利用鱼的沉浮原理制造潜艇解析是演绎推理;是归纳推理;是类比推理答案把演绎推理写成三段论的形式【例1】将下列演绎推理写成三段论的形式(1)一切奇数都不能被2整除,75不能被2整除,所以75是奇数;(2)三角形的内角和为180,RtABC的内角和为180;(3)通项公式为an3n2(n2)的数列an为等差数列解(1)一切奇数都不能被2整除(大前提)75不能被2整除(小前提)75是奇数(结论)(2)三角形的内角和为180.(大前提)RtABC是三角形(小前提)RtABC的内角和为180.(结论)(3)数列an中,如果当n2时,anan1为常数,则an为等差数列(大前提)通项公式an3n2,n2时,anan13n23(n1)23(常数)(小前提)通项公式为an3n2(n2)的数列an为等差数列(结论)把演绎推理写成“三段论”的一般方法1用“三段论”写推理过程时,关键是明确大、小前提,三段论中大前提提供了一个一般性原理,小前提提供了一种特殊情况,两个命题结合起来,揭示一般性原理与特殊情况的内在联系2在寻找大前提时,要保证推理的正确性,可以寻找一个使结论成立的充分条件作为大前提1将下列演绎推理写成三段论的形式(1)平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分;(2)等腰三角形的两底角相等,A,B是等腰三角形的两底角,则AB.解(1)平行四边形的对角线互相平分,大前提菱形是平行四边形,小前提菱形的对角线互相平分结论(2)等腰三角形的两底角相等,大前提A,B是等腰三角形的两底角,小前提AB.结论演绎推理的综合应用【例2】如图所示,D,E,F分别是BC,CA,AB边上的点,BFDA,DEBA,求证:DEAF.写出“三段论”形式的演绎推理思路探究用三段论的模式依次证明:(1)DFAE,(2)四边形AEDF为平行四边形,(3)DEAF.解(1)同位角相等,两直线平行,(大前提)BFD和A是同位角,且BFDA,(小前提)所以DFAE.(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提)DEBA且DFEA,(小前提)所以四边形AFDE为平行四边形(结论)(3)平行四边形的对边相等,(大前提)DE和AF为平行四边形的对边,(小前提)所以DEAF.(结论)1用“三段论”证明命题的步骤(1)理清证明命题的一般思路;(2)找出每一个结论得出的原因;(3)把每个结论的推出过程用“三段论”表示出来2几何证明问题中,每一步都包含着一般性原理,都可以分析出大前提和小前提,将一般性原理应用于特殊情况,就能得出相应结论2证明:如果梯形的两腰和一底相等,那么它的对角线必平分另一底上的两个角证明已知在梯形ABCD中(如图所示),ABDCAD,AC和BD是它的对角线,求证:CA平分BCD,BD平分CBA.证明:等腰三角形的两底角相等,大前提DAC是等腰三角形,DCDA,小前提12.结论两条平行线被第三条直线所截,内错角相等,大前提1和3是平行线AD,BC被AC 所截的内错角,小前提13.结论等于同一个量的两个量相等,大前提2,3都等于1,小前提2和3相等结论即CA平分BCD.同理BD平分CBA.利用完全归纳推理证明问题探究问题1演绎推理的结论一定正确吗?提示:演绎推理的结论不会超出前提所界定的范围,所以在演绎推理中,只要前提和推理形式正确,其结论一定正确2利用完全归纳推理证明方程ax22xa0有实根,a的值应分哪几种情况?提示:分a0和a0两种情况【例3】试证明函数f(x)ln(x)的定义域为R,并判断其奇偶性思路探究只须对x0,x0,x0时,x0显然成立;当x0时,x10成立;当x|x|x,所以xx(x)0.因此对xR,都有x0,即函数的定义域为R.又因为f(x)ln(x)ln(x)lnlnln(x)f(x)故f(x)是奇函数1完全归纳推理不同于归纳推理,后者仅仅说明了几种特殊情况,它不能说明结论的正确性,但完全归纳推理则把所有情况都作了证明,因此结论一定是正确的2在利用完全归纳推理证明问题时,要对证明的对象进行合理的分类,且必须把所有情况都考虑在内3求证:nN,当1n4时,f(n)(2n7)3n9能被36整除证明当n1时,f(1)(27)3936,能被36整除;当n2时,f(2)(227)329108363,能被36整除;当n3时,f(3)(237)3393603610,能被36整除;当n4时,f(4)(247)3491 2243634,能被36整除综上,当1n4时,f(n)(2n7)3n9能被36整除.1下面几种推理过程是演绎推理的是()A两条直线平行,同旁内角互补,如果A与B是两条平行直线的同旁内角,则ABB某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得出高三所有班级的人数都超过50人C由平面三角形的性质,推测出空间四面体的性质D在数列an中,a11,an(n2),通过计算a2,a3,a4猜想出an的通项公式解析A是演绎推理,B,D是归纳推理,C是类比推理答案A2用三段论证明命题:“任何实数的平方大于0,因为a是实数,所以a20”,你认为这个推理()A大前提错误B小前提错误C推理形式错误 D是正确的解析这个三段论推理的大前提是“任何实数的平方大于0”,小前提是“a是实数”,结论是“a20”,显然结论错误,原因是大前提错误答案A3函数y2x5的图象是一条直线,用三段论表示为:大前提:_;小前提:_;结论:_.答案一次函数的图象是一条直线函数y2x5是一次函数函数y2x5的图象是一条直线4如图所示,因为四边形ABCD是平行四边形,所以ABCD,BCAD.又因为ABC和CDA的三边对应相等,所以ABCCDA.上述推理的两个步骤中分别省略了 _、_.答案大前提大前提5用三段论的形式写出下列演

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论