


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
感悟导数的运算法则问题熟练掌握导数的运算是学好导数的前提,也是近年高考考查的一个方面,这部分主要考查公式的运用和运算法则以及综合应用。一、求导公式以及导数运算法则的应用例1 求下列函数的导数:(1);(2);分析:仔细观察和分析所给函数表达式的结构规律,紧扣求导运算法则,联系基本函数的求导公式可以迅速解决一类简单函数的求导问题。若不直接具备求导法则条件,可先进行适当的恒等变形。解析:(1)。(2)。评注:运用可导函数求导法则和导数公式求可导函数的导数的基本步骤如下:(1)分析函数的结构和特征;(2)选择恰当的求导法则和导数公式求导;(3)整理得结果。二、导数运算在解析几何中的应用例2 在抛物线上取横坐标分别为与的两点,过这两点引割线,在抛物线上哪一点处的切线平行于所引的割线?分析:要求平行于所引割线的切线,则切线的斜率应与所引割线的斜率相等。解析:将与代入抛物线方程,得,则所引割线的斜率与切线斜率均为=5。设符合题意的切点坐标为,代入抛物线方程得,故在抛物线上过点处的切线平行于所引的割线。评注:导数不仅有求斜率的功能,而且还有求点的坐标的功能。三、导数计算的创新应用例3 求满足下列条件的函数。(1)是三次函数,且,;(2)是一次函数,。分析:(1)可设三次函数(),由条件确定、;(2)由是一次函数,可设(),然后利用条件确定。解析:(1)设(),则,由得,由得,由,可建立方程组,解得,。(2)由是一次函数可知为二次函数,设(),则。把、代入方程得,即。要使对任意方程都成立,则需,解得,。评注:注意(2)用待定系数法确定二次函数的系数,认真体会所用的方法。例4 已知抛物线通过点,且在点处与直线相切,求、的值。分析:该例涉及三个未知量,已知中有三个独立条件,因此,要通过解方程组来确定、的值。解析:过点,。,曲线过点的切线的斜率为。又曲线过点,。由解得,故、的值依次为3、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度万科商业地产商铺租赁服务协议
- 货物装卸服务质量改进措施
- 数学兴趣小组课程创新计划
- 信息系统教育与科研项目管理人才培养模式创新考核试卷
- 农场经营之道:自给自足的智慧
- 南阳医学高等专科学校《空间环境与试验导论》2023-2024学年第一学期期末试卷
- 聊城职业技术学院《经济学类专业导论》2023-2024学年第一学期期末试卷
- 淄博师范高等专科学校《创新方法与实践》2023-2024学年第一学期期末试卷
- 新星职业技术学院《金融交易实训》2023-2024学年第一学期期末试卷
- 江苏电子信息职业学院《人文地理学B》2023-2024学年第一学期期末试卷
- 敬老院工作计划
- 医院感染暴发报告流程与处置预案-课件
- 金蝶KIS专业版完整操作手册
- 公文写作与处理(培训课件)
- 艾滋病实验室质量管理与控制
- 档案销毁清册(封面)
- 施工方案安全交底
- 2024年中国汽车基础软件发展白皮书5.0-AUTOSEMO
- DB65-T 4773-2024 生物安全实验室消毒技术指南
- 肠梗阻课件完整版本
- 高压氧舱项目创业计划书
评论
0/150
提交评论