




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
能力升级练(十六)直线与圆一、选择题1.(2019山西运城中学、芮城中学期中联考)直线l:xsin 30+ycos 150+1=0的斜率为()A.33B.3C.-3D.-33解析直线方程为12x-32y+1=0,整理为斜截式为y=33x+233,可知直线的斜率为33.故选A.答案A2.圆(x-1)2+(y-2)2=1关于直线y=x对称的圆的方程为()A.(x-2)2+(y-1)2=1B.(x+1)2+(y-2)2=1C.(x+2)2+(y-1)2=1D.(x-1)2+(y+2)2=1解析由题意知圆心的坐标为(1,2).易知(1,2)关于直线y=x对称的点为(2,1),所以圆(x-1)2+(y-2)2=1关于直线y=x对称的圆的方程为(x-2)2+(y-1)2=1,故选A.答案A3.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-43B.-34C.3D.2解析圆x2+y2-2x-8y+13=0化为标准方程为(x-1)2+(y-4)2=4,故圆心为(1,4),d=|a+4-1|a2+1=1,解得a=-43.答案A4.(2019重庆期末)直线mx+y+1-m=0与圆x2+y2+x-2y-6=0的位置关系是()A.相交B.相切C.相离D.无法确定解析把圆的方程化为标准形式可得x+122+(y-1)2=294,直线方程可化为m(x-1)+y+1=0,故可得直线过定点A(1,-1),点A到圆心的距离为94+4=52292,即点A在圆内,故直线与圆相交,故选A.答案A5.已知圆的方程为x2+y2-6x-8y=0,设该圆中过点M(3,5)的最长弦、最短弦分别为AC,BD,则以点A,B,C,D为顶点的四边形ABCD的面积为()A.106B.206C.306D.406解析已知圆的圆心为(3,4),半径为5,则最短的弦长为252-12=46,最长的弦为圆的直径为10,且最短的弦与最长的弦垂直,于是四边形的面积为124610=206.故选B.答案B6.(2019江西临川第一中学高三上学期期末)已知圆x2+y2-4x-5=0的弦AB的中点为Q(1,1),直线AB交x轴于点P,则|PA|PB|=()A.4B.5C.6D.8解析x2+y2-4x-5=0可化为(x-2)2+y2=9,所以圆x2+y2-4x-5=0的圆心坐标为C(2,0),半径为3.它与坐标轴的交点分别为M,N,所以|MO|=1,|NO|=5,因为弦AB的中点为Q(1,1),所以QCAB,kQC=1-01-2=-1,所以kAB=1,所以直线AB的方程为y-1=x-1,即y=x,所以点P的坐标为(0,0),它与原点重合.由圆的性质可得|PA|PB|=|MO|NO|=5,故选B.答案B7.(2019湖北沙市中学期末)已知圆C:(x-2)2+y2=4,直线l1:y=3x和l2:y=kx-1被圆C所截得的弦的长度之比为12,则k的值为()A.12B.33C.1D.3解析圆C:(x-2)2+y2=4的圆心为(2,0),半径为2,圆心到线l1:y=3x的距离为3,l1被圆C所截得的弦的长度为222-3=2,圆心到l2的距离为|2k-1|k2+1,l2被圆C所截得的弦的长度为24-2k-1k2+12,由l1,l2被圆C所截得的弦的长度之比为12,可得24-2k-1k2+12=22,解得k=12,故选A.答案A8.(2019湖南永州模拟)自圆C:(x-3)2+(y+4)2=4外一点P(x,y)引该圆的一条切线,切点为Q,PQ的长度等于点P到原点O的距离,则点P的轨迹方程为()A.8x-6y-21=0B.8x+6y-21=0C.6x+8y-21=0D.6x-8y-21=0解析由题意得,圆心C的坐标为(3,-4),半径r=2,因为|PQ|=|PO|,且PQCQ,所以|PO|2+r2=|PC|2,所以x2+y2+4=(x-3)2+(y+4)2,即6x-8y-21=0,所以点P的轨迹方程为6x-8y-21=0,故选D.答案D9.直线y=x+m与圆x2+y2=16交于不同的两点M,N,且|MN|3|OM+ON|,其中O是坐标原点,则实数m的取值范围是().A.(-22,-22,22)B.(-42,-2222,42)C.-2,2D.-22,22解析设MN的中点为D,则OM+ON=2OD,|MN|23|OD|,由|OD|2+14|MN|2=16,得16=|OD|2+14|MN|2|OD|2+14(23|OD|)2,从而得|OD|2,由点到直线的距离公式可得|OD|=|m|22,解得-22m22.答案D二、填空题10.(2018山东日照六校联考)已知圆C1:x2+y2+2x-6y+1=0,圆C2:x2+y2-4x+2y-11=0,则两圆有条公切线.解析圆C1的标准方程为(x+1)2+(y-3)2=9,圆心为C1(-1,3),半径为r1=3,圆C2的标准方程为(x-2)2+(y+1)2=16,圆心为C2(2,-1),半径为r2=4,又|C1C2|=(-1-2)2+3-(-1)2=5,故r2-r1|C1C2|0,c0)恒过点P(1,m),且Q(4,0)到动直线l0的最大距离为3,则12a+2c的最小值为.解析动直线l0:ax+by+c-2=0(a0,c0)恒过点P(1,m),所以a+bm+c-2=0.又Q(4,0)到动直线l0的最大距离为3,所以(4-1)2+(0-m)2=3,解得m=0.所以a+c=2.又a0,c0,所以12a+2c=12(a+c)12a+2c=1252+c2a+2ac1252+2c2a2ac=94,当且仅当c=2a=43时取等号.答案9412.(2019四川绵阳质检)若A(-33,y0)是直线l:3x+y+a=0(a0)上的点,直线l与圆C:(x-3)2+(y+2)2=12相交于M、N两点,若MCN为等边三角形,则过点A作圆C的切线,切点为P,则|AP|=.解析因为MCN为等边三角形,圆C的圆心为C(3,-2),半径为r=23,所以根据点C到直线l的距离可得:r2-r22=3=|3-2+a|3+1,即|a+1|=6,因为a0,所以a=5,所以直线l的方程为3x+y+5=0,又A(-33,y0)在直线l上,所以-9+y0+5=0,所以y0=4,即A(-33,4),所以|AP|=|AC|2-|PC|2=(-33-3)2+(4+2)2-12=62.答案6213.设圆C:(x-3)2+(y-5)2=5,过圆心C作直线l交圆于A,B两点,交y轴于点P,若A恰好为线段BP的中点,则直线l的方程为.解析圆C:(x-3)2+(y-5)2=5的圆心C的坐标为(3,5),半径为5,设P点的坐标为(0,b).因为A是线段BP的中点,AP=AB=2r,CP=3r=35,即(3-0)2+(5-b)2=(35)2,解得b=-1或b=11.当b=-1时,直线l的方程为2x-y-1=0,当b=11时,直线l的方程为2x+y-11=0.答案2x-y-1=0或2x+y-11=0三、解答题14.(2018全国,文20)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程.(2)求过点A,B且与C的准线相切的圆的方程.解(1)由题意得F(1,0),l的方程为y=k(x-1)(k0).设A(x1,y1),B(x2,y2).由y=k(x-1),y2=4x得k2x2-(2k2+4)x+k2=0.=16k2+160,故x1+x2=2k2+4k2.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=4k2+4k2;由题设知4k2+4k2=8,解得k=-1(舍去),k=1.因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则y0=-x0+5,(x0+1)2=(y0-x0+1)22+16.解得x0=3,y0=2或x0=11,y0=-6.因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.15.(2019全国,文21)已知曲线C:y=x22,D为直线y=-12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E0,52为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.(1)证明设Dt,-12,A(x1,y1),则x12=2y1.由于y=x,所以切线DA的斜率为x1,故y1+12x1-t=x1.整理得2tx1-2y1+1=0.设B(x2,y2),同理可得2tx2-2y2+1=0.故直线AB的方程为2tx-2y+1=0.所以直线AB过定点0,12.(2)解由(1)得直线AB的方程为y=tx+12.由y=tx+12,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 知识产权授权及收益分成补充协议
- 宠物医疗连锁机构区域代理合作协议
- 股权资产剥离与生物科技产业合作开发协议
- 海外房地产项目合规性审计与评估协议
- 抖音短视频热点事件品牌推广合作协议
- 网红炸鸡店区域代理合同范本下载
- 模具行业专用真空热处理炉租赁与远程监控服务合同
- 高端国际展会参展商搭建与安全防护协议
- 网络内容审核算法定制开发及后续技术支持合同
- 商业合同终止原因分析函范文
- 《管道用浮球式消气器》
- 内科学肺源性心脏病
- 中国螺蛳粉行业政策、市场集中度、企业竞争格局及发展趋势预测报告
- 无人机设计导论学习通超星期末考试答案章节答案2024年
- 小学生心理健康讲座5
- GB/T 6974.3-2024起重机术语第3部分:塔式起重机
- 福建师范大学《生活中的科学》2023-2024学年第一学期期末试卷
- 通达信公式编写教程
- 当代国际政治与经济 期末复习课件高中政治统编版选择性必修一
- 2025届南宁二中、柳州高中高考物理二模试卷含解析
- 消防应急预案电子版
评论
0/150
提交评论