




已阅读5页,还剩65页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
研究直线与圆的位置关系有两种方法 1 几何法 令圆心到直线的距离为d 圆的半径为r 利用d与r的关系判定 判断直线与圆的位置关系 2 代数法 联立直线方程与圆的方程组成方程组 消元后得到一元二次方程 其判别式为 0 直线与圆相离 0 直线与圆相切 0 直线与圆相交 例1 判断下列直线与圆的位置关系 如果有公共点求出它们公共点的坐标 1 直线 x y 0 圆 x2 y2 2x 4y 4 0 2 直线 y x 5 圆 x2 y2 2x 4y 3 0 3 直线 x y 3 圆 x2 y2 4x 2y 4 0 审题指导 题中分别给出了直线方程和圆的一般方程 可以用代数法 方程组解的个数 判断位置关系 也可以用几何法 圆心到直线的距离与半径比较 判断 规范解答 1 方法一 圆x2 y2 2x 4y 4 0 方程可化为 x 1 2 y 2 2 9 圆心坐标为 1 2 半径为3 圆心到直线的距离所以直线与圆相交 有两个交点 由解得或所以直线与圆的两个交点的坐标分别是 1 1 2 2 方法二 由消去y得x2 x 2 0 因为 1 2 4 1 2 9 0 所以方程组有两解 直线与圆有两个公共点 以下同方法一 2 方法一 直线的方程可化为x y 5 0 圆的方程可化为 x 1 2 y 2 2 2 其圆心坐标为 1 2 半径为圆心到直线的距离所以直线与圆相切 有一个公共点 由解得所以切点坐标为 2 3 方法二 由消去y得x2 4x 4 0 因为 42 4 1 4 0 所以直线与圆相切 有1个公共点 解方程组可得所以切点坐标为 2 3 3 直线方程可化为x y 3 0 圆的方程可化为 x 2 2 y 1 2 1 其圆心的坐标为 2 1 半径为1 圆心到直线的距离所以直线与圆相离 没有公共点 变式训练 直线y x 1与圆x2 y2 1的位置关系是 a 相切 b 相交但直线不过圆心 c 直线过圆心 d 相离 解析 选b 方法一 由消去y整理 得x2 x 0 即x 0或x 1 所以直线与圆相交 又圆x2 y2 1的圆心坐标为 0 0 且0 0 1 所以直线不过圆心 方法二 圆x2 y2 1的圆心坐标为 0 0 半径长为1 则圆心到直线y x 1的距离因为所以直线y x 1与圆x2 y2 1相交但直线不过圆心 1 过圆上一点求圆的切线方程的一般步骤 1 求切点与圆心连线的斜率k 2 由垂直关系得切线斜率为 3 代入点斜式方程得切线方程 当切线方程的斜率k 0或k不存在时 可由图形直接得到切线方程为y b或x a 圆的切线方程的求法 2 过圆外一点求圆的切线方程的方法 1 几何法设切线方程为y y0 k x x0 即kx y kx0 y0 0 由圆心到直线的距离等于半径 可求得k 进而求出切线方程 2 代数法设切线方程为y y0 k x x0 即y kx kx0 y0 代入圆的方程 得一个关于x的一元二次方程 由 0求得k 切线方程即可求出 过圆外一点的切线必有两条 当求得一条直线时 另一条一定是斜率不存在的情形 例2 求过点 1 7 且与圆x2 y2 25相切的直线方程 审题指导 解答此类题目的关键是先判断点与圆的位置关系 在此基础上选择代数法或几何法求切线方程 规范解答 方法一 由题意知切线斜率存在 设切线的斜率为k 则切线方程为y 7 k x 1 即kx y k 7 0 解得或 所求切线方程为或即4x 3y 25 0或3x 4y 25 0 方法二 由题意知切线斜率存在 设切点为 x0 y0 则解得或 切线方程为4x 3y 25 0或3x 4y 25 0 方法三 由题意知切线斜率存在 设切线斜率为k 则切线方程为y 7 k x 1 即y k x 1 7 由得x2 k x 1 7 2 25 即 k2 1 x2 2k2 14k x k2 14k 24 0 2k2 14k 2 4 k2 1 k2 14k 24 0 解得或 所求切线方程为或即4x 3y 25 0或3x 4y 25 0 互动探究 把题设中的 点 1 7 换成 点 0 5 求相应问题 解题提示 先判断点与圆的位置关系 然后求解 解析 点 0 5 恰好在圆x2 y2 25上 过该点的圆的切线方程有且只有一条 而直线y 5恰好满足题意 故该圆的切线方程为y 5 弦长问题的求解策略思路一 代数法 解直线和圆的相交弦问题 常常采用联立方程组 消元得到关于x 或y 的一元二次方程 利用弦长公式 或 求解 思路二 几何法 直线和圆相交求弦长 可用圆心到直线的距离d 半径r及半弦长组成的直角三角形求解 解有关直线与圆的弦长问题一般用几何法 与弦长有关的问题 例3 2010 四川高考 直线x 2y 5 0与圆x2 y2 8相交于a b两点 则 ab 审题指导 代数法 联立直线x 2y 5 0与圆x2 y2 8的方程消元得到关于x的一元二次方程 利用弦长公式求解 几何法 求圆心到直线的距离d 利用d 半径r及半弦长组成的直角三角形解出 ab 规范解答 方法一 设a x1 y1 b x2 y2 由消去y得5x2 10 x 7 0 由根与系数的关系得 方法二 因为圆心到直线的距离所以答案 变式训练 2011 重庆高考 在圆x2 y2 2x 6y 0内 过点e 0 1 的最长弦与最短弦分别为ac和bd 则四边形abcd的面积为 解析 选b 圆x2 y2 2x 6y 0可化为 x 1 2 y 3 2 10 设圆心为m 则m 1 3 半径如图 由题意 ac bd 且be de bd所在直线方程为即x 2y 2 0 在rt med中de2 md2 me2 例 直线l经过点p 5 5 并和圆c x2 y2 25相交 截得弦长为求l的方程 审题指导 当直线l的斜率不存在时 l x 5与圆c相切 所以直线l的斜率存在 可设直线l的方程为y 5 k x 5 根据弦长如果联立方程组 求交点a b坐标 计算量较大 通常在这里可采取 设而不求 的方法 规范解答 据题意知直线l的斜率存在 设直线l的方程为y 5 k x 5 与圆c相交于a x1 y1 b x2 y2 如图所示 oh 是圆心到直线l的距离 oa 是圆的半径 ah 是弦长 ab 的一半 在rt aho中 oa 5 解得或k 2 直线l的方程为x 2y 5 0或2x y 5 0 变式备选 已知圆c的圆心与点p 2 1 关于直线y x 1对称 直线3x 4y 11 0与圆c相交于a b两点 且 ab 6 则圆c的方程为 解析 由于 2 0 关于直线y x对称的点为 0 2 所以点 2 1 关于直线y x 1的对称点坐标为 0 1 即所求圆心为 0 1 此点到直线3x 4y 11 0的距离为由勾股定理求出圆的半径为所以圆的方程为x2 y 1 2 18 答案 x2 y 1 2 18 典例 12分 2010 江苏高考改编 在平面直角坐标系xoy中 已知圆x2 y2 4上有且仅有四个点到直线12x 5y c 0的距离为1 求实数c的取值范围 审题指导 该类问题属于 圆定直线变 的问题 求解时应充分结合圆的对称性及数形结合的思想 由题意分析 可把问题转化为坐标原点到直线的距离小于1 从而求出c的取值范围 规范解答 如图 圆x2 y2 4的半径为2 圆上有且仅有四个点到直线12x 5y c 0的距离为1 问题转化为坐标原点 0 0 到直线12x 5y c 0的距离小于1 6分 8分即 c 13 13 c 13 12分 误区警示 对解答本题时易犯的错误具体分析如下 即时训练 讨论直线y x b与曲线的交点个数 解题提示 表示一个半圆 利用数形结合的思想求解 解析 如图所示 在坐标系内作出曲线的图象 半圆 直线l1 y x 2 直线l2 当直线l3 y x b夹在l1与l2之间 包括l1 l2 时 l3与曲线有公共点 进一步观察交点的个数 可有如下结论 1 当b 2或时 直线y x b与曲线无公共点 2 当 2 b 2或时 直线y x b与曲线仅有一个公共点 3 当时 直线y x b与曲线有两个公共点 1 直角坐标平面内 过点p 2 1 且与圆x2 y2 4相切的直线 a 有两条 b 有且仅有一条 c 不存在 d 不能确定 解析 选a 可以判断点p在圆外 因此 过点p与圆相切的直线有两条 2 过点p 0 1 与圆x2 y2 2x 3 0相交的所有直线中 被圆截得的弦最长时的直线方程是 a x 0 b y 1 c x y 1 0 d x y 1 0 解析 选c 点p 0 1 在圆x2 y2 2x 3 0内 圆心为c 1 0 截得的弦最长时的直线为cp 方程是即x y 1 0 3 设直线l过点 2 0 且与圆x2 y2 1相切 则l的斜率是 解析 选c 由题意知直线l的斜率存在 设直线的方程为y k x 2 直线l与圆x2 y2 1相切可得解得 斜率为 4 直线被圆x2 y2 6x 2y 15 0所截得的弦长等于 解析 由题可知圆的圆心为 3 1 半径r 5 圆心到直线的距离所以直线被圆所截得的弦长等于答案 5 以点 2 1 为圆心且与直线x y 6相切的圆的方程是 解析 将直线x y 6化为x y 6 0 圆的半径所以圆的方程为答案 6 已知直线l 3x 4y 12 0与圆c x2 y2 2x 4y 1 0 试判断它们的公共点的个数 解析 圆的方程可化为 x 1 2 y 2 2 4 其圆心为c 1 2 半径为2 圆心到直线的距离故直线与圆的公共点有2个 一 选择题 每题4分 共16分 1 2011 杭州高二检测 若圆x2 y2 dx ey f 0与x轴相切于原点 则 a d e 0 f 0 b e f 0 d 0 c d f 0 e 0 d f 0 d 0 解析 选c 圆x2 y2 dx ey f 0与x轴相切于原点 2 2010 广东高考 若圆心在x轴上 半径为的圆o位于y轴左侧 且与直线x 2y 0相切 则圆o的方程是 a x 2 y2 5 b x 2 y2 5 c x 5 2 y2 5 d x 5 2 y2 5 解题提示 由切线的性质 圆心到切线的距离等于半径求解 解析 选d 设圆心为 a 0 a 0 则解得a 5 所以 所求圆的方程为 x 5 2 y2 5 故选d 3 由点p 1 4 向圆x2 y2 4x 6y 12 0引的切线长是 a 3 b c d 5 解析 选a 圆的方程可化为 x 2 2 y 3 2 1 则点p 1 4 到圆心的距离为 由点p向圆引的切线长为 4 直线y x b与曲线有且仅有一个公共点 则实数b的取值范围是 a b b 1 b 1或b c 1 b 1 d 解析 选b 曲线表示半圆 如图 作半圆的切线l1和经过端点a b的直线l3 l2 由图可知 当直线y x b位于l2和l3之间时 满足题意 1 b 1 而l1与半圆相切 此时可求得因此b的取值范围是 1 b 1或 方法技巧 数形结合在求解直线与圆交点个数中的应用直线与圆的一部分有交点时 如果采用代数法去研究 则消元以后转化成了给定区间的二次方程根的分布问题 求解过程相对复杂 而如果采用数形结合及直线与圆的几何法求解 先找出边界 然后结合直线或圆的变化特征求解 相对来说就简单得多了 二 填空题 每题4分 共8分 5 若直线l过点且被圆x2 y2 25截得的弦长为8 直线l的方程是 解析 当l的斜率不存在时 其方程为x 3 显然其截圆得的弦长为8 符合题意 当l的斜率存在时 设l的方程为即由题意可知解得即此时l的方程为3x 4y 15 0 答案 x 3或3x 4y 15 0 6 2010 天津高考 已知圆c的圆心是直线x y 1 0与x轴的交点 且圆c与直线x y 3 0相切 则圆c的方程为 解析 由题意可得圆心 1 0 圆心到直线x y 3 0的距离即为圆的半径 故所以圆的方程为 x 1 2 y2 2 答案 x 1 2 y2 2 三 解答题 每题8分 共16分 7 2011 石家庄高二检测 求过点a 2 4 向圆x2 y2 4所引的切线方程 解析 因为该点在圆外 设直线斜率为k 则直线的方程为y 4 k x 2 即kx y 4 2k 0 所以解得所以直线方程为 3x 4y 10 0 又当直线的斜率不存在时x 2也满足题意 故所求直线的方程为3x 4y 10 0或x 2 误区警示 本题在求解直线方程时常因思维不全面而漏掉直线方程x 2 8 已知方程 x2 y2 2mx 2 m 2 y 0 1 求半径最小时圆的方程 2 判断直线3x 4y 2 0与 1 中圆的位置关系 解析 1 原方程可化为 x m 2 y m 2 2 2 m 1 2 2 当m 1时 半径最小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合买商品合同(标准版)
- 船舶保险合同(标准版)
- 心脏起搏器术后护理及康复指导方案
- 探究2025年废旧塑料回收利用新工艺与设备创新报告
- 压款供货合同(标准版)
- 小学语文教学计划制定范例
- 2025年煤炭清洁高效燃烧技术政策导向与应用实践案例分析报告
- 拼音教学课件设计思路
- 基于经纬网的地理课堂互动教学设计
- 医学院急救实训室建设方案
- 妊娠糖尿病的预防和治疗
- 项目人员离职与人员替补计划管理方案
- 隧道坍塌应急知识培训课件
- 专利侵权比对分析报告
- 民航安全检查全套教学课件
- 社情民意信息写作与传播
- 电气施工图审图要点
- 货车司机服务流程
- 2023中华护理学会团体标准-老年人误吸的预防
- 养老机构标准化建设方案
- 2022年江苏省春季高考数学试卷
评论
0/150
提交评论