




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3 2 2函数模型的应用实例 1 几种常见的函数模型 1 一次函数模型 2 二次函数模型 3 指数函数模型 4 对数函数模型 5 幂函数模型 1 函数模型应用的两个方面 1 利用已知函数模型解决问题 2 建立恰当的函数模型 并利用所得函数模型解释有关现象 对某些发展趋势进行预测 2 应用函数模型解决问题的基本过程 数据拟合时 得到的函数为什么需要检验 提示 因为根据已给的数据 作出散点图 根据散点图 一般是从我们比较熟悉的 最简单的函数作模拟 但所估计的函数有时可能误差较大或不切合客观实际 此时就要再改选其他函数模型 某公司生产一种电子仪器的固定成本为20000元 每生产一台仪器需增加投入100元 已知总收益满足函数 1 将利润表示为月产量的函数f x 2 当月产量为何值时 公司所获利润最大 最大利润为多少元 总收益 总成本 利润 思路点拨 由题目可获取以下主要信息 总成本 固定成本 100 x 收益函数为一分段函数 解答本题可由已知总收益 总成本 利润 知利润 总收益 总成本 由于r x 为分段函数 所以f x 也要分段求出 将问题转化为分段函数求最值问题 解析 1 设每月产量为x台 则总成本为20000 100 x 从而f x 在函数应用题中 正确理解题意 养成良好的阅读习惯是成功的一半 而二次函数模型常涉及顶点坐标 函数的单调性 区间最值等问题 二次函数的配方是比较有效的解题手段 1 在经济学中 函数f x 的边际函数mf x 定义为mf x f x 1 f x 某公司每月最多生产100件产品 生产x x n 件产品的收入函数为r x 3000 x 20 x2 单位 元 其成本函数c x 500 x 4000 单位 元 利润为收入与成本之差 1 求利润函数p x 及其边际利润函数mp x 2 利润函数p x 与边际利润函数mp x 是否具有相等的最大值 解析 由题意知 x 1 100 且x n 1 p x r x c x 3000 x 20 x2 500 x 4000 20 x2 2500 x 4000 x 1 100 x n mp x p x 1 p x 20 x 1 2 2500 x 1 4000 20 x2 2500 x 4000 2480 40 x x 1 100 x n 某林区1999年木材蓄积量200万立方米 由于采取了封山育林 严禁采伐等措施 使木材蓄积量的年平均递增率能达到5 1 若经过x年后 该林区的木材蓄积量为y万立方米 求y f x 的表达式 并求此函数的定义域 2 作出函数y f x 的图象 并应用图象求经过多少年后 林区的木材蓄积量能达到300万立方米 解析 1 现有木材蓄积量200万立方米 经过1年后木材蓄积量为200 200 5 200 1 5 经过2年后木材蓄积量为200 1 5 200 1 5 5 200 1 5 2 经过x年后木材蓄积量为200 1 5 x y f x 200 1 5 x x虽以年为单位 但木材每时每刻均在生长 x 0 且x r 函数的定义域为 0 2 作函数y f x 200 1 5 x x 0 图象 如图所示 年份0为1999年 附图 作直线y 300 与函数y 200 1 5 x的图象交于a点 设a x0 300 则a点的横坐标x0的值就是函数值y 300时 木材蓄积量为300万立方米时 所经过的时间x的值 8 x0 9 则取x 9 经过9年后林区的木材蓄积量能达到300万立方米 由于 递增率 问题多抽象为指数函数形式 而由指数函数形式来确定相关的量的值多需要使用计算器计算 如果问题要求不严格 就可以通过图象近似求解 用函数的图象求解未知量的值或确定变量的取值范围 是数学常用的方法之一 这种将 数 与 形 结合解决问题的思想方法即 数形结合方法 能使抽象的问题直观化 对人的数学思维发展有深刻的影响 2 某商店如果将进货为8元的商品按每件10元售出 每天可销售200件 现在采用提高售价 减少进货量的方法增加利润 已知这种商品每涨价0 5元 其销售量就减少10件 问应该将售价定为多少时 才能使所赚利润最大 并求出最大利润 解析 设每件售价提高x元 则每件得利润 10 8 x 元 即 2 x 元 每天销售量变为 200 x 0 5 10 件 即 200 20 x 件 所获利润y 2 x 200 20 x 20 x 4 2 720 0 x 10 故当x 4 即售价定为14元时 每天可获得最大利润720元 某工厂今年1月 2月 3月生产某产品分别为1万件 1 2万件 1 3万件 为了估测以后每个月的产量 以这三个月的产品数量为依据 用一个函数模拟该产品的月产量y与月份数x的关系 模拟函数可以选用二次函数或函数y a bx c 其中a b c为常数 已知4月份该产品的产量为1 37万件 请问用以上哪个函数作为模拟函数较好 并说明理由 思路点拨 由题目可获取以下主要信息 此工厂前三个月的产量已知 题中给出了两个函数模型 选择其中一个 解答本题先由条件确定函数解析式中的待定系数的值 再研究x 4时 哪个函数值更接近1 37 1 问题中给出函数解析式 且解析式中带有需要确定的参数 这些参数需要根据问题的内容或性质来确定 然后再通过运用函数使问题本身获解 2 在建立函数模型时 对同一实际问题可选取不同的模型 通过比较 选出比较接近实际的模型 3 某地西红柿从2月1日起开始上市 通过市场调查 得到西红柿种植成本q 单位为 元 102kg 与上市时间t 单位 天 的数据如下表 1 根据上表中数据 从下列函数中选取一个函数描述西红柿种植成本q与上市时间t的变化关系 q at b q at2 bt c q a bt q a logbt 2 利用你选取的函数 求西红柿种植成本最低时的上市天数及最低种植成本 1 解决应用问题的基本步骤 1 阅读理解 认真审题 就是要读懂题中的文字叙述 理解叙述所反映的实际背景 领悟从背景中概括出来的数学实质 尤其是理解叙述中的新名词 新概念 进而把握新信息 在此基础上 分析出已知是什么 求什么 涉及哪些知识 确定自变量与函数值的意义 尝试将问题函数化 审题时要抓住题中关键的量 要勇于尝试 探索 敏于发现 归纳 善于联想 化归 实现应用问题向数学问题的转化 2 引进数学符号 建立数学模型 一般设自变量为x 函数为y 并用x表示各种相关量 然后根据问题的已知条件 运用已掌握的数学知识 物理知识及其他相关知识建立函数关系式 将实际问题转化为一个数学问题 实现问题的数学化 即建立数学模型 3 利用数学的方法对得到的数学模型予以解答 求出结果 4 将数学问题的解代入实际问题进行核查 舍去不合题意的解 并作答 这些步骤用框图表示如下 2 数据拟合过程中的假设就一般的数学建模来说 是离不开假设的 如果在问题的原始状态下不作任何假设 将所有的变化因素全部考虑进去 对于稍复杂一点的问题就无法下手了 假设的作用主要表现在以下几个方面 1 进一步明确模型中需要考虑的因素和它们在问题中的作用 通常 初步接触一个问题 会觉得围绕它的因素非常多 经仔细分析筛查 发现有的因素并无实质联系 有的因素是无关紧要的 排除这些因素 问题则越发清晰明朗 在假设时就可以设这些因素不需考虑 2 降低解题难度 虽然每一个解题者的能力不同 但经过适当的假设就都可以有能力建立数学模型 并且得到相应的解 一般情况下 是先在最简单的情形下组建模型 然后通过不断地调整假设使模型尽可能地接近实际 从而得到更满意的解 某公司在甲 乙两地销售一种品牌车 利润 单位 万元 分别为l1 5 06x 0 15x2 和l2 2x 其中x为销售量 单位 辆 若该公司在这两地共销售15辆车 则能获得的最大利润为 a 45 606b 45 6c 46 8d 46 806 错因 上面解答中x 51 5不为整数 在实际问题中是不可能的 因此x应根据抛物线取与x 51 5接近的整数才符合题意 正解 设甲地销售x辆 则乙地销售 15 x 辆 则总利润l l1 l2 5 06x 0 15x2 2 15 x 0 15x2 3 06x 30 0 15 x 10 2 2 45 606 根据二次函数图象和x n 当x 10时 获得最大利润l 0 15 102 3 06 10 30 45 6万元 答案 b 作业 1 将进货价为8元的商品按每件10元售出 每天可销售200件 若每件的售价涨0 5元 其销售量减少10件 问将售价定为多少时 才能使所赚利润最大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民族手工艺创新设计-洞察及研究
- 室内设计木饰面墙面板施工方案和措施
- 农村合作社参与农产品电商销售协议
- 虚拟现实感官测试-洞察及研究
- 2025年调酒师职业技能大赛酒吧安全管理与预防措施试题试卷
- 海南省省直辖县级行政单位定安县定安中学2024-2025学年高一上学期期中考试生物试卷(有答案)
- 广西钦州市第十三中学2025-2026 学年上学期高三第一周考试化学试卷(含答案)
- 洞穴环境记录解析-洞察及研究
- 企业商务信息服务平台建设合同
- 跨文化培训效果研究-第2篇-洞察及研究
- GB/T 35568-2017中国荷斯坦牛体型鉴定技术规程
- GB/T 34239-2017聚3-羟基丁酸-戊酸酯/聚乳酸(PHBV/PLA)共混物长丝
- GB/T 28707-2012碟簧支吊架
- GB/T 2791-1995胶粘剂T剥离强度试验方法挠性材料对挠性材料
- GB/T 25702-2010复摆颚式破碎机颚板磨耗
- GB/T 13384-2008机电产品包装通用技术条件
- 超分子化学简介课件
- 流体力学-流体力学基本方程课件
- 粮油产品购销合同
- YYT 0681.2-2010 无菌医疗器械包装试验方法 第2部分:软性屏障材料的密封强度
- 《中华人民共和国工会法》工会法律知识竞赛题库120题(含答案解析)
评论
0/150
提交评论