




文档简介
编号 毕业设计 论文 外文翻译 译文 院 系 机电工程学院 专业 机械设计制造及其自动化 学生姓名 周观焱 学号 1200110431 指导教师单位 机电工程学院 姓名 徐晋勇 职称 教授 题目类型 理论研究 实验研究 工程设计 工程技术研究 软件开发 2016 年 6 月 3 日 桂林电子科技大学毕业设计 论文 报告用纸第 1 页 共 28 页 Int J Miner Process 44 45 1996 461 469 粉碎机中使用新程序设置实时监管 Arvid Svensson Per Hedvall MaxFjaestad Allis Mineral Systems Crushing and Screening Svedala Sweden 摘要 改变吸管圆锥破碎机的设置 覆盖和凹环之间的距离 通过提高或降低液压 活塞 Hydroset 的覆盖的方式 使得破碎机即使在满载时也能操作 现代电子和 微型计算机领域的发展 使得设计一个小的 可靠的和非常复杂的 可以设置吸 管破碎机自动监管的系统成为可能 系统监控能源消耗 破碎力和设置 及在进 给 或操作条件下即使很小的变化不断适应破碎机 这项技术已扩大应用的范围 可以用圆锥破碎机成功地解决 在本文 我们将给出一个现代圆锥破碎机技术的 一般描述 也给出了一些新的可能应用的例子 在有检查容器的闭合电路中细粉碎 与棍棒厂竞争 由于粉碎室的自动化和 精心设计 产品小于 3 毫米是常见的 另一个例子是在有吸管破碎机的开放环行道 金矿石的破碎为 10 毫米 这 个自动化系统确保破碎机运行在尽可能最小的设置 从而确保产生正确的放电 在某些应用程序中 有趣的是使圆锥破碎机在潮湿环境中操作 大约在 20 年以前 阿里斯将矿物与水系统安置第一个吸管 物料与水一起添加 这些破碎 机仍在运行 我们将提供我们的经验 小弹性圆锥破碎机在计算机控制下 可用于创建矿石破碎植物比一些传统安 装的大型机器更高成效 破碎盒 的理念被提出 桂林电子科技大学毕业设计 论文 报告用纸第 2 页 共 28 页 1 介绍 吸管破碎机的特征是主轴由液压支持 破碎机的设置 通常被称为 CSS 关闭 侧设置 可以通过主轴向上或向下移动被调节 偏心装配强制主轴在一个回转器 不旋转 上的移动 在凹环和覆盖之间产生破碎运动 参见图 1 凹环和覆盖是易磨损零件 由耐磨锰合金钢制造 这些衬垫的轮廓的形状对 于就能力和减少方面的高速持续的生产至关重要 根据理想的配置是依据物料颗 粒的大小和分布 以及其他的事情 斯文森和斯蒂尔 1990 年 为了达到各种各 样的应用程序 吸管破碎机有七种不同的粉碎室 破碎后的物料从额外的粗到额 外的细 图 1 带有自动检测设置的吸管破碎机的原则 2 自动设置监管 ASR 自从 1968 年开始 艾利斯矿物系统 AMS 生产的自动化为圆锥破碎 机设定调节 ASR 系统 第一种类型是基于继电器的自动调节系统 有缓慢 的调整和简单的逻辑 他们监测了电动机的功率 液压和油箱 间接主轴位置 中的油位 该系统被精制 并且在 1986 年 在生产 1550 单元基于 ASR C 计算 机之后是介绍了 该单元具有更快的调节和更精确的控制 允许它可以在很小的 桂林电子科技大学毕业设计 论文 报告用纸第 3 页 共 28 页 时间间隔 0 1mm 调整机器的设置 这给出了一个新的和独特的机会 运行破碎机在一个选定的最大液压和 电机功率 允许自动找到相应的 理想 的设置 物料变量如工作指数 粒度 水分含量等 不断的变化 理想 的设置 破碎机也会改变 在老设计中 选择 一个固定的设置后 液压 或机械动力 和电源允许变化 根据设置 这会导致 破碎机频繁的超载或低功率利用率即低效破碎 随着困难的物料原料 如潮湿的 矿石与粘土污染 都可能发生 凹环和覆盖搭配使用 由于这个意味着会增加凹环与覆盖之间的设置 手动 式破碎机必须校准对凹环与覆盖之间的设置进行补偿 通过电力和液压指导运行 的破碎机就不会遇到这个问题 设置是自动调整的 因为研磨的材料 如金矿石或石英岩 破碎机的设置会增加 1mm 导致在一个 转变磨损 如果这发生在一个细破碎机运行在 CSS 6 7 毫米 相对影响是剧烈的 在 1992 年 ASR plus 取代了 ASR C 500 单元后 这个系统更快 有一个更 好 自适应调节算法 更容易计划 有一个计算机通信接口 包括 RS 485 作为标 准 通过一个调制解调器和 PC 机 我们有可能从长距离重组 ASR plus 系统 ASR plus 有记忆功能 可以存储五个不同的破碎形式 还记录破碎机 的性能数据 一些 249 的变量是 CSS CSS 定位点 平均 CSS 在给定期间 最小和 最大 CSS 动力 最大动力 压力 最大压力 磨损 主轴运动总额的剩余百分 比的 5 种监管模式 5 种调节阻尼 总额和加载的操作时间因为新 同样因为最新 班轮变化 同样因为最新的校准 能源消费和总的时间消耗 3 精细破碎 传统破碎机已经用于生产在 12 毫米或 16 毫米以下范围的产品 适合在杆 工厂初级磨 现在它是可行的 在闭路制造一个 3mm 产品或在开路制造一个 10 毫米产品 通过使用物料控制分析 优化粉碎室和ASR 在粉碎室创建一个压力区导致颗 粒间的破碎是可能的 一些需要考虑的因素有 3 1 进料粒度测定 重要的是粉碎室有足够的吞下最大的颗粒饲料的进气口以极大的缓解 物料 提要部分也必须有足够的数量的孔隙以避免封闭 3 2 工作指数 岩石的硬度由工作指标的影响衡量 工作指数的测试方法由艾莉查尔莫斯的 弗雷德 邦德先生提出的 现在的艾利斯矿产系统 这种方法基于从 50 毫米到 桂林电子科技大学毕业设计 论文 报告用纸第 4 页 共 28 页 75 毫米的粒子 由相同的人提出的方法研磨没有相关性工作指数 在一般情况 下 我们假定软岩如石灰石工作指数 12 WI 中硬岩石像花岗岩工作指数 16 WI 坚硬的岩石如玄武岩工作指数 20 WI 千瓦时 吨 3 3 密度 在某种意义上说 圆锥破碎机的运行动作与活塞泵的运动相似 它每个破碎 的体积占某岩石的体积 这意味着一个沉重的岩石将比与其密度低的岩石有一个 更高的能力 3 4 水分 物料的水分会在粒子表面均匀吸收 在实践中 这意味着大部分的水分会被 最好的粒子吸收 增加它们彼此间与破碎的表面的粘连 这意味着随着水分含量 的增加和减少 水分能力下降 参见图 2 图 2 由于水分能力降低 3 5 阻塞进料 因为圆锥破碎机工作在一个相对稳定的状态 所以它必须阻塞 意味着粉碎 室上面的体积总是充满了材料 物料流入破碎机粉碎室的速度是由破碎机决定 的 见表 1 和图 3 表 1一个圆锥破碎机阻塞物料的重要性 破碎机 吸管长 H 36 M 32 毫米 物料材料 Gneiss Diabase 物料大小 3 25 mm 50 3 9 毫米 桂林电子科技大学毕业设计 论文 报告用纸第 5 页 共 28 页 图 3 如何获得阻塞物料的破碎机 3 6 分布 如果物料进入了破碎机 破碎机就必须隔离 且把破碎室的区域调整到最难 破碎物料的情况下 其余的破碎室将得到相同的设置 因此无法工作 以充分发 挥其潜力 该室将部分阻塞物料或部分缺少物料 3 7 细碎电路性能的例子 细粉碎电路如图 4 所示 可以破碎 4 毫米到 12 毫米的干糙黄金矿石物料 而且使用一个装有 132 千瓦功率的电机 得到 50 到 55 的 4 毫米左右的产品 桂林电子科技大学毕业设计 论文 报告用纸第 6 页 共 28 页 图 4 工艺的精细压碎和 H 3000 e f 电路 3 8 在开路精细压碎 细粉碎的一个新的概念是使用 ASR 系统作为正确的最终尺寸的保证 而不 是使用一个筛选的职责 带来的好处是明显的 因为没有最终筛选或粗糙材料没 有返回输送机 需要较低的安装成本 一个实际的例子 如图 5 所示中的工艺流 程图 这是列出一个在加纳的仲裁金矿域 在最后的阶段是由两个 H 4000 EF 带有 ASR C 控制系统的圆锥破碎机组成 每个破碎机是在提供每 10 25 小时 100 公吨 在开路时粉碎金属到 10 毫米 P80 9 3 毫米 粉碎的矿石通过集聚化 氰化浸出和活性炭回收直接进入黄金选矿 图 5 流程从加纳的仲裁金矿 桂林电子科技大学毕业设计 论文 报告用纸第 7 页 共 28 页 4 湿法粉碎 在特殊的应用程序中 在潮湿条件下破碎岩石或矿石 它可能是有趣的 临 界粒子从一个 ASG 或 AG 磨机的破碎 在某些情况下 有趣的是在粉碎之前实际添加水到饲料 一个典型的案例 可以在材料粉碎时导致有害灰尘 水量必须是足够有让大量的自由水和绝对浸泡饲料 这意味着含水量是根据 饲料的类型和粒度测定的 一般我们每吨饲料的材料使用0 75到1 5立方米的水 一般在以下几点情况时申请吸管破碎机的湿粉碎过程 能力通过破碎机增加 由于通过水流运输细材料 功耗对于一个给定的设置是正比于干燥过程的功耗 与干燥过程相比 放电产品含有更细 破碎机可以在较小的 CSS 中比在干燥过程中操作正规 由于腐蚀 易损件的寿命减少约 70 破碎机对饲料的变化更加敏感 因此 ASR 监管建立非常快的调节 5 破碎磁带系统 5 1 在大型压榨厂的小对大破碎机 许多破碎植物大吨位 500 2000 年 mtph 后建造的 以大为美 的哲学 主 要设计关心的是使用尽可能少的机器 导致非常大的机器和简单的过程解决方 案 新方法是一种破碎装置基于更小的机器更优化这个发展过程 一些参数有 非常大的圆锥破碎机 锥直径为 2 1 米的和更大的 代表不到圆锥破碎机全球 销售额的 15 这意味着较小的破碎机生产在较大的系列 因此可以产生更多的 成本效益的 小型破碎机通常对美元提供更多破碎 或多或少相同的适用于振动 屏幕 参见图 6 从 Svensson 和引导 1990 与更多的破碎机植物工厂的输出减少 对政府的依赖在每个单独的机器上 长期的平均容量和可用性改善 破碎过程与 更多的机器可以允许个人破碎机更优化的职责 小机的主要缺点是 他们有更小的磨损部件和因此经常需要改变衬垫 克 每 吨饲料中实际的磨损率同等或更好的小型破碎机 这是补偿的优越较小的破碎 机的使用可靠性 CS 被发现的可靠性 吸管的实用性 装机功率 300 千瓦 重 78 200 公斤 两个 4000 吸管 2 200 千瓦 每个重达 14000 公斤的差异是显而 易见的 大的机器的壳 19 600 公斤 和主轴 23 500 公斤 比整个破碎机机器重 H 4000 桂林电子科技大学毕业设计 论文 报告用纸第 8 页 共 28 页 图 6 比较大型和小型圆锥破碎机 5 2 压盒 灵活性是现代吸管破碎机最重要的设计参数之一 所有七个粉碎室 EF F MF M MC C 和 EC 安装在同一个壳上 偏心衬套有 3 个或 4 个键槽切割提 供简单的偏心距的变化 例如我们可以通过通过改变磨损部件 覆盖和凹环 改 变一个 H 4000 EC 能够破碎 210 mm 的物料 到一个 H 4000 EF 制造从 6 12 毫米物料 P 80 6 5 毫米产品的能力 这种在一个大工厂的美丽是几乎相同的 破碎机可以安装在二级 三级和三 级阶段 然后在改变衬垫后进入任何其他位置工作 见图 7 桂林电子科技大学毕业设计 论文 报告用纸第 9 页 共 28 页 图 74000 破碎机吸管盒方案设计 辊扎单元可以在跟踪服务设施上 取而代之的是一个有衬垫的单元新 参考文献 Svensson A and Steer J F 1990 New cone crusher technology and developments in comminution circuits Miner Eng l 2 83 103 桂林电子科技大学毕业设计 论文 报告用纸第 10 页 共 28 页 使用一个新的平面磨床进给无心磨削技术 ba WuYXuW a Graduate School Akita Prefectural University 84 4 Tsuchiya ebinokuchi Yurihonjo Akita 015 0055 Japan bDepartmentofMachineIntelligenceandSystemsEngineering AkitaPrefecturalUniversity 84 4 Tsuchiya ebinokuchi Yurihonjo Akita 015 0055 Japan 摘要 这篇文章是介绍关于另一种无心磨削技术的发展 即 基于平面磨床的无心 磨削进给 在这个新的方法中 一个紧凑的无心磨削装置 由超声波椭圆振动的 滑块 一个刀片和其各自持有人组成 安装到一个平面磨床的工作台上 和无心 磨削进给操作作为一种旋转的磨轮 给在向下的圆筒形工件以保持滑块和叶片运 动 在磨削过程中 工件的旋转速度由滑块震动的超声波控制 这滑块是由粘结 压电陶瓷设备 PZT 在一种金属弹性体 不锈钢 SUS304 上制造 在这种 新无心磨削中 为使工件的滚圆过程和工件的圆度预测清晰 提出了一种明确的 方法 通过模拟跟踪实验验证 如偏心角 砂轮进给率 切削量和工件的旋转速 度等工艺参数对工件的圆度的影响 获得的结果表明 1 最优偏心角在 6 2 较高的加工精度 可以在一个较低的砂轮进给率 较大的切削和更快的工 件的旋转速度获得 3 在最优的条件下研磨后 工件的圆度从初始值 19 90 m 提高到最后一个 0 90 m 关键词 无心磨削 平面磨床 超声振动 饲料圆度 滑块 桂林电子科技大学毕业设计 论文 报告用纸第 11 页 共 28 页 1简介 在制造业中 高精度 高圆柱形部件生产加工 如轴承座圈 硅锭 销 规和导管等 在无心磨削加工中已得到了广泛开展 有两种类型的无心磨床在商 场上可购得 一种是带有调节轮和其他带有滑块的调节轮 他们在工件是如何支 持和工件转速在磨削过程中的控制各不相同 自从调节轮型的无心磨床被海姆在 1915 年 米津 1966 年 发明 做了大量的研究一直致力于提高加工精度和效 率 罗和巴拉什 1964 年 通过考虑机器的几何因素和弹性偏转 提出了一个 计算机方法调查无心磨削的固有精度 此外 罗等人 1965 年 实验得到了加 工弹性参数 桥本龙太郎等人 1982 年 分析了安全加工问题通过对调节摩擦 传动功能操作轮 著等人 1982 年 研究了接触区变形面积和选择无颤振条件 建立动态模型 罗和贝尔 1986 年 实验研究去除率高的磨削工艺和优化磨削 条件 吴等人 1996 年 通过计算机仿真优化磨削条件的方法 明确了磨削对 圆度误差参数的影响 埃普雷亚努等人 1997 年 通过一个线性的模型 在地 面上描述了模式的形成与演化 分析了磨削系统的稳定性 郭等人 1997 年 研究了无心磨削上中心和下中心的几何圆形 有助于设置可接受的条件的选择 阿尔维苏里等人 2007 年 提出了采用主动控制的压电致动器一个减少颤振的 新方法 克拉金克等人 2008 年 开发了一个分析模式 有助于有效无心磨削 系统设置更高的工艺灵活性和生产力 滑块式无心磨削也吸引了来自工业界和学 术界的研究人员注意 阳和张 1998 年 设计了一个平板真空履增加高精度应 用的承载能力和刚度鞋无心磨削 然后 杨等人 1999 年 和张等人 1999 年 分析了真空静压工艺的稳定性鞋无心磨削 此外 张某等人 2003 年 开发一 个几何模型预测监控发电鞋无心磨削模型用于分析磨削过程 从生产成本的角度来看 由于装卸工件非常的容易和快速 这两种类 型的无心磨床非常的适合小品种 大体积的生产 然而 无心磨床是一种专用机 而且成本相对昂贵 对于多品种 小批量的生产是不足的 它的需求将在最近几 年迅速增加 针对这个问题 作为一个解决方案 作者之一的吴等人 2005 年 以前提出的一种新型无心磨削技术 可以执行一个平面磨床 而不是一个无心磨 床 这种基于超声波滑块无心磨削的概念的方法 是由吴等人开发 2003 年 2004 年 在该方法中 一个紧凑的单元主要由超声波椭圆振动的滑块 一个 叶片 和其各自持有人组成 安装在一个多用磨床工作台上 超声波滑块的功能 是保持与叶片连接的圆柱形工件 和控制在其上端面的椭圆运动工件的转速 根据工件对磨轮的相对运动 三种无心磨削操作的类型可以被实行 所提出 的方法如图 1 所示 a 切向进给式 其磨削装置位于最初在左下方的砂轮的 距离足够大 加载工件上端面超声波的滑块 然后工件在进给速度fv 图 1 a 桂林电子科技大学毕业设计 论文 报告用纸第 12 页 共 28 页 下沿砂轮切线方向向右进给进行研磨动作 直到单元的到达砂轮的右下范围 其 距离足够大到装卸右侧工件的超声波滑块 b 里面进给型 在最初的砂轮中 砂轮位于研磨单元之上 在超声波滑块的上端面上 砂轮与研磨单元的距离足够 大到能够加载工件 然后在进给速度frv 图 1 b 下 砂轮对工件径向向下 进给来执行研磨作用 直到所需的材料被去除了 在经过短时间的 火花 后 砂轮从地面工件解除 砂轮与工件的距离足够大到卸载工件的超声波滑块 c 贯穿进给型 在最初的砂轮中 砂轮从超声波滑块的上端面设置在一个给定的距 离 如图所示图 1 c 然后将工件装在加载指南上 进给的空间在砂轮和 超声波滑块之间 沿其轴向方向的进给速度fav下进行磨削行动 直到它失去与 砂轮的接触为止 而是为了后续的卸载在卸载指南上被支持 图 1 三种类型的无心磨床平面磨床 切向进给式 A 进给型 B 和贯穿馈 电式 C 在我们以前的工作中 对于切向进给式仿真和实验工作已经被进行 徐等人 2010 年 获得的结果表明 工件的圆度可以被极大地提高 从 23 9 m 的初始 值提高到 0 8 m 的最后一个值 从而验证这种新方法 本文的目标是确认在平面 磨床上无心磨削进给式的进行 为了这个目的 提出一个仿真方法去明确工件圆 整过程和探讨工艺参数的影响 如工件偏心角 砂轮进给率 材料去除率和在工 件圆度上的工件转速 然后进行了一系列的磨削实验 研究确定了仿真结果 2使用平面磨床的进给无心磨削的工作原理 图 2 显示的是使用用平面磨床的进给无心磨削的工作原理 研磨装置由一个 超声椭圆振动滑块及其支架 刀片和持有人 塞和一个底板组成 安装在平面磨 床的工作台上有一个角 以下简称偏心角 见图 2 a 工件约束之间 的叶片 滑块和塞 由于砂轮在工件径向方向上的进给速度为frv 进行一个进 给型下磨削操作 使工件产生与车轮相反的旋转的方向 如图 2 b 一旦需 要去除了 进给中的车轮停止几秒允许 清磨 在磨削时 工件转速wn是由 桂林电子科技大学毕业设计 论文 报告用纸第 13 页 共 28 页 椭圆运动滑块的上端面与塞用于防止工件跳出磨削地区 此外 叶片楔形与倾斜 角度 通常称为叶片角度 和价值是一般设置在在 60 在最佳条件下工件的圆由 哈里森和皮尔斯证明了 2004 年 在磨削装置 滑块是粘贴压电构造陶瓷器 PZT 的两个分离的电极上金属 弹性体 不锈钢 SUS304 当两个放大交流电 AC 信号 20 千赫 与相位 差对 由一个波函数发生器产生 应用压电陶瓷 弯曲和纵向超声振动激发同时 在对振动位移的合成两个方向上产生的最终椭圆运动的面孔金属弹性体 因此 工件旋转控制通过摩擦力和工件之间的鞋 使工件的圆周速度是一样的弯曲在鞋 端面振动速度 工件旋转速度可通过改变参数的值调整如振幅和频率 f p VP 施 加的电压对 PZT 因为鞋子弯曲振动速度随所施加的电压的变化 见徐某等人 2009 年 此外 预负荷施加到鞋在其下端面的长度使用弹簧防止 PZT 断裂方 向由于共振 图 2 在进给无心磨床平面磨床结构示意图 3几何凑整分析 图 3 显示了滑块 叶片 工件和砂轮在使用平面磨床磨削时间 t 后进给无心 磨削操作的几何排列 在这一刻 偏心角与工件半径分别从各自的初始值0 和 0 对成为 t 和 t 在这同时 工件由叶片 带有一个倾斜角度 和 在点 B 和 C 的滑块举行 另外 在点 A 的地面 砂轮在旋转速度gn下旋转 同 时砂轮在进给速率frv下向下传送到工件 桂林电子科技大学毕业设计 论文 报告用纸第 14 页 共 28 页 图 3 使用用表面磨床的进给无心磨削的几何安排 3 1 几何凑整建模 在仿真模型中 见图 3 制作几个假定 1 工件与刀片和滑块的接触 的点 B 和 C 是容易变的 特别在在磨削过程中 2 整机振动太小以至于被忽 视 在机器上发生无颤振引起滑块的超声波椭圆振动 3 工件的旋转运动是 永远稳定的 在磨削时转速不发生变化 4 对砂轮磨损太小以至于不被认可 并且在磨削过程中的砂轮半径gR保持恒定 让 XY 坐标系统是位于工作台上 在工作台上选择一个的 O 点 将点 O 确 定为坐标系统的起源 X 轴是水平方向的 在垂直方向上的是 Y 轴 在磨削之 前 砂轮的初始中心0gO和工件的 XY 坐标中心0wO分别为 0OgX 0OgY 和 0OwX 0OwY 因此 本初始叶片的接触点 B 的 XY 坐标 度 研究 和鞋接触点 C 0CX 0CY 可以从最初的获得几何排列 如下 然后 线性方程组的代表叶片端面与鞋上端面在这个坐标系统可以写为 对叶片端面 1 在鞋上端面 2 用 B 点坐标和 C 为情商 1 和 2 分别给出了 0 RQYPX 3 000 OWYY 4 桂林电子科技大学毕业设计 论文 报告用纸第 15 页 共 28 页 在这时 tan P 1 Q sin tancos0000 OwOwXYR 在磨削 过程中 工件的中心wtO及砂轮的中心gtO的坐标将随材料的变化而变换 让被研 磨后平行于 x 轴方向的瞬时工件半径为时间 t 的函数的 t 见图 3 在这 一刻 工件半径在点 A B 和 C 可以被表示为 ATt BTt 和 CTt 特别地 在 wAntT 4 2 wBnT 4 2 和wCnT4 3 时 为了点 A B 和 C 的时间延迟 自从 BTt 和 CTt 等距于从工件中心wtO到叶片端面和 到滑块上端面的距离 分别地 他们可以在图 3 中的从几何安排中获得 利用方 程 3 和 4 如下 求解方程 5 和 6 同时产生在时间 t 的工件中心wtO的 XY 坐标 如下 在这一时刻 在图 3 中砂轮中心gtO的 XY 坐标也从几何安排获得为 此外 下面的关系都是建立在图 3 中的几何排列 在这里 随后 得到以下通过重新排列的点 A 的 xy 坐标的方程 9 和 10 在这里 tU 2 cot1 2 2 w 2 wcottcot2gOgOwOORtYtYtXtYtV 最终 从工件中心 wtO的 XY 坐标计算 在经过时间 t 研磨后工件半径 ATt 在点 A 磨削点 A 如下 桂林电子科技大学毕业设计 论文 报告用纸第 16 页 共 28 页 因此 明显轮的切削深度为 AATtTTt 其中 T 是一个工件 加工完成所需的时间 如果研磨系统具有理想的刚度 真正的轮切深度将等于是 一个理论值 然而 在实际磨削过程中 研磨系统承受磨削力引起弹性变形 罗 等人介绍了无量纲参数 用加工的弹性变形参数 k 来直接衡量无心磨削系统的弹 性 它被定义为一个真正的切削深度和理论的切削深度之间的商 方程 13 罗 和巴拉斯 1964 年 马力内斯库等人 2006 年 理论的切削深度 真正的切削深度 k 13 继罗等人的考虑 真正的轮切削深度可以被计算 公式为计算 k 在 当前的工作中 导致的真正的工件半径 A 点是 然而 该轮深度切割使用这些方程计算小于零 偶尔 显然 这种现象会没 有发生 因此 公式 14 应改为 3 2 加工的弹性参数的测定 如上所述 加工弹性参数 K 取决于磨矿系统的刚度 如果模拟结果是可信 的 K 值的确定应为给定的粉磨系统 对切向进给式无心用平面磨床磨削 参数 k 的测量方法是在我们以前的工作中提出的 徐等人 2010 年 然而 其所提 出的方法是不适合进给型的 由于是这两种类型之间的几何安排有着一个显著的 差异 因此 应开发一个替代方法 为了获得进给型的加工弹性参数 罗等人 1965 年 提出了一种在常规进给无心研磨中测定加工弹性参数 K 的方法 其中的一个 参数值正比于真实砂轮的切削深度 即 磨削功率或磨削力 在 进给 或 出 火花 阶段测量 获取参数 K 使用这种方法 在当前加工的一个替代方法被提 出 确定基于平面磨床的进给型的无心磨削的 K 值式如下 在出火花时 砂轮切割深度的理论值是只是被切除的一些工件的材料 车轮 的切削深度的下降率取决于参数 K 值 在开始出火花时 如果砂轮的切削深度的 理论值是0 在第一次半旋转时 真实的切削深度1e 并在第二次半旋转时是 桂林电子科技大学毕业设计 论文 报告用纸第 17 页 共 28 页 2e 可以被计算 计算公式分别为 16 和 17 根据罗等人 1965 年 和 马力内斯库等人 2006 年 因此 在半转时 真实的切削深度 可通过以下得到 由于一般情况下 真实的切削深度正比于正常磨削力 Fn 下面从方程 18 得到 求解方程 19 的收益率 其中 e 是自然对数的基础 miInfInFnmni 因此 由于 i 和 m 的 运行 在出火花后 只要法向磨削力niF和nmF被测量 K 值可根据公式 20 得 到 图 4 磨削力的测量方法示意图 图 4 显示的是一种测量磨削力的方法 提出了目前的工作 一个三维测力计 是安装在磨床单元下面 记录磨削力在 x 方向的水平分力 Fx 和在 Y 方向的垂直 分力 Fy 因此 是根据图 4 所示的几何排列的 获得了以下几个方面的关系 桂林电子科技大学毕业设计 论文 报告用纸第 18 页 共 28 页 其中 F n 和 Ft 分别是法向和切向磨削力 求解方程 21 得 因此 只要 F x F y 的值是已知的 法向磨削力 F n 可以得到 然后值参数 k 可以用公式 20 确定 3 3 仿真程序 图 5 a 最初的工件轮廓 b 工件的分割 C 模拟分析的计算流程图 一个直径 4mm 的未加工工件如图 5 a 所示 在其圆周方向产生一个在径 向方向的深度为m 20平面凹痕 指示初始圆度 使用这样的初始形状的原因是 气缸有一个扁平的凹痕 易于制备和任何缺乏无心磨削过程的对失去一部分波度 的阶段会随时显示 由于此形状已经包含所有重要的阶段 一个明显的贡献 罗 等人 1965 年 在仿真中 沿工件的圆周将工件划分为相同的 360 段 如图 5 b 所示 因此初始工件轮廓可以表示为 360 半径 i i 1 360 在磨削 过程中的任何给定的时间 t 内 只要 ATt 和 CTt 是已知的 瞬时半径 ATt 可以使用基本的方程 1 15 来计算 在此过程中 每个工件半径 的 360 可得到 用于绘制剖面和计算圆度 桂林电子科技大学毕业设计 论文 报告用纸第 19 页 共 28 页 此外 磨削过程分为两个阶段 见图 2 b 第一阶段 在工件以 frwvnN 1 旋转运行之后 砂轮以速度frv下降向工件方向进给 直到到达结束 位置 第二阶段 砂轮在驻留一段时间 Ts 工件以swtnN 2旋转运行 后 砂轮 的进给停止 出现火花 模拟中使用的工艺参数如表 1 所示 仿真流程图如图 5 c 所示 表 1仿真与实验条件 4仿真结果与实验验证 在第 3 节 仿真方法已经被研究 为了调查工件圆度机理及使用平面磨 床的进给型的无心磨削的工艺参数的影响 为了验证所提出的新型无心研磨方法 和确认仿真结果 在实验台上进行了磨削实验 这是通过安装以前生产的无心磨 床单元 吴等人 2005 年 构建 在计算机数控平面磨床 RPASGT315 长 濑有限责任公司 的工作台上装备有金属金刚石砂轮BNSDC75400 75 3115180HTD 如图 6 所示 桂林电子科技大学毕业设计 论文 报告用纸第 20 页 共 28 页 图 6 对磨削装置的主要部分 4 1 实验细节 在实验中 从长 K 级硬质合金 10TH 杆上准备一个圆柱形工件 mLmmm134 再通过表面研磨产生一个有m 20内径深的平面凹痕 如 图 9 a 所示 表示最初的圆度 为了测量磨削力而获得实际加工的弹性参 数 K 一个商品 3 维测力计 19256A 奇石有限公司 见图 6 是位于磨床单元 和平面磨床的工件之间 其他的磨削条件是列表在表 1 研磨的步骤如下 第一 单元制约工件装在工作台上 工作台向右或向左运 动的位置仔细的调整 所以偏心角是一个给定的值 然后砂轮向下运转对工件 进行进给磨削操作 最后在已经完成去除给出的库存后 在进给运动的砂轮停止 运动 随着出了一段时间的火花 得到的磨削力被用来计算弹性参数 K 和测量 圆形工件的截面轮廓 通过一个圆度测量仪测定 rondcom55a 日本东京精密股 份有限公司 4 2 加工的弹性参数的计算 图 7 分别显示了在 6 smvfr 5 mm1 0 sTs3 和 rpmnVVwPP9050 的条件下 x 方向和 y 方向的磨削力 F x 和 F y 它可以 被观察到磨削力 F x 和 F y 在开始同时增加的很快 然后在进给阶段时间inT期间 几乎是保持恒定 当进给停下来时允许一段时间 Ts 出火花 然后磨削力迅速减 小 因此 niF和nmF的值可以可以通过方程 22 计算 利用从图 7 得到的数据 xiF xmF yiF和ymF 因此加工弹性参数 K 可通过方程 20 得到 在目前的 条件下 K 值为148 011 16 0 eek 进一步的工作获得 K 通过改变偏心角 但保持其他参数不变进行 结果 桂林电子科技大学毕业设计 论文 报告用纸第 21 页 共 28 页 如图 8 所示 发现 K 随着偏心角的减小而减小 其平均值约为 0 15 这是因为 磨削力的水平分力 f x 随着偏心角的增加而增加 这一结果显示单元在水平方向 上有较大的的弹性变形 见图 2 导致真正的切削深度减少 最终降低 K 的值 图 7 一个典型的磨削力测量结果图 8 参数 K 的测量结果 4 3 仿真和实验结果的比较 图 9 a 和 b 分别显示了工件在相同操作条件下实际磨削的前和后的图 片和横截面的型材 如图 7 所示 从中可以看出 在初始工件上的平面凹痕被去 除 研磨后工件的圆度被大幅度的提高 从初始值的 m 90 19 提高到最终价值的 m 37 1 因此 验证了所提出的新的进给无心磨削技术 图 9 在 6 smvfr 5 mm1 0 sTs3 和 rpmnVVwPP9050 的条件下 研磨前工件的图片和剖面 a 和研磨后工件的图片和剖面 b 图 10 在磨削过程中工件的轮廓和圆度变化 6 smvfr 5 mm1 0 rpmnw90 sTs3 15 0 k 桂林电子科技大学毕业设计 论文 报告用纸第 22 页 共 28 页 图 10 显示的是在 6 smvfr 5 mm1 0 rpmnw90 sTs3 15 0 k条件下得到的仿真结果 表明工件的圆度rE的倾向单调下降 在磨削过 程中 工件截面轮廓不规则的数目随不规则的尺寸减小而增加 从中可以发现rE 的值在出火花的开始骤减 在出火花后最终圆度达到m 40 1 在不同的偏心角 下 及测量的各自的加工弹性参数下 工件的最终圆度和轮廓的仿真结果绘制在 图 11 实验测量得到的如图 12 所示 比较图 11 和图 12 揭示了模拟结果与实 验结果比对工件轮廓与圆度显示出良好的协定 图 13 a d 分别显示了在最后工件圆度上对偏心角 砂轮进给速度frv 材料去除率 和工件转速wn的影响的仿真和实验结果 在所有的情况下 仿真 结果与实验结果不仅在变化趋势上相一致 也在圆度值上相一致 验证了本文提 出的仿真方法和仿真结果 从图 13 a 可以看到 偏心角 明显影响工件的圆度rE 开始时rE值随 的增加而减少 然后在 6 时rE增加达到谷值 rE值不再随 的增加而减少 这一趋势与常规进给无心磨削类似 周等人 1996 年 哈里森和皮尔斯 2004 年 吴等人 1999 年 当 设置在 一个更小的值如 0 或 3 具有较高的 频率的波纹是很容易通过磨削从初始工件轮廓上消除 而当 在一个较大的值如 9 或 12 时 容易消除的是一个较低的频率波纹 因此 一旦 设定在中间值 6 无论是高频或低频波浪都能容易消除 最终导致在 6 时最小圆度的获 得 如图 11 和 12 所示 无论是模拟结果和实验结果如图 13 所示 都表明砂 轮进给率frv 材料去除率 和工件转速wn也明显影响工件的圆度 应在磨削操 作中设置一个较小的frv 一个更大的 较高的wn 为了达到更高的磨削精度 等 如较小的圆度 较小的圆度可以达到较低的砂轮进给率frv和较高的工件转 速wn的原因可能是在磨削过程中 较低的frv和较高的wn导致工件轮每转的切削 深度要小 从而导致磨削力小 这对高精度研磨是重要的 在这样一种方式下对 于材料去除率 影响圆度的原因 如图 13 所示 C 这是因为在磨削周期中工 件的总转数 影响工件的圆度明显的重要因素由加列戈 2007 年 吴等人 1999 年 证明 取决于 的值 桂林电子科技大学毕业设计 论文 报告用纸第 23 页 共 28 页 图 11的条件下 对不同工件偏心角分布的模拟结果 smvfr 5 mm1 0 rpmnw 图 12 实验结果工件偏心角谱不同的条件下 smvfr 5 mm1 0 rpmnVVwPP9050 桂林电子科技大学毕业设计 论文 报告用纸第 24 页 共 28 页 图 13 a 偏心角 b 砂轮进给率frv c 去除率 和 d 工转速wn 在最终工件圆度的影响 5结论 一种新型无心磨削技术 即 基于平面磨床上的进给无心磨削已经被提 出来了 为了创建这一新技术 使用模拟方法 模拟新型磨床的弹性变形的进行 弹性变形用加工弹性参数的常数表示 导出的加工弹性参数的常数 阐明了在研 磨时工件取整过程和预测的工件的圆度 在实验研究确定了加工弹性参数之后 通过一个模拟的方法研究了在工件的圆度上过程参数的影响 例如在工件圆度上 的工件偏心角 磨削砂轮进给率 材料的去除率和工件旋转速度等过程参数 然 后通过实验确认 得到的仿真和实验结果可以概括如下 1 加工弹性参数随偏心角的增加而增加 其平均值在测试条件时是 0 15 2 最优偏心角约为 6 一个较小的或在较大的角度导致圆度误差较大 在一个较低的砂轮进给率 较大的材料去除工件率和较快的工件旋转速度下 可 获得较高的加工精度 即 较小的工件圆度 3 在最佳研磨条件下研磨后 工件的圆度从初始值m 9 19提高到最后的 值m 90 0 上述结果证实了新的无心磨削技术进给类型提出的有效性 在未来的工作 桂林电子科技大学毕业设计 论文 报告用纸第 25 页 共 28 页 中 我们将通过实验和模拟 处理使用平面磨床无心进给类型的磨削 这些努力 的细节将在随后的论文中被报告 致谢 这项研究获得的部分金融支持是通过从日本的科学研究拨款 为了促进 科学发展 批准号 17560100 作者也非常感谢从该科学研究补助金的基础和 机床工程基础获得的金融支持 桂林电子科技大学毕业设计 论文 报告用纸第 26 页 共 28 页 参考文献 1 Albizuri J Fernandes M H Garitaonandia I Sabalza X Uribe Etxeberria R 2 Hern ndez J M 2007 An active system of reduction of vibrations in a centerless 3 grinding machine using piezoelectric actuators Int J Mach Tools Manuf 47 1607 1614 4 Epureanu B I Dowell E H Montoya F M 1997 Pattern formation and linear stability analysis in centerless grinding Proc Inst Mech Eng B J Eng Manuf 211 8 619 626 5 Gallego I 2007 Intelligent centerless grinding global solution for process instabilitiesand optimal cycle design Ann CIRP 56 1 347 352 6 Guo C Malkin S Kovach J A Laurich M 1997 Computer simulation of below center and above center centerless grinding Mach Sci Technol 1 2 235 249 7 Harrison A J L Pearce T R A 2004 Reduction of lobing in centreless grinding viavariation of set up angles Key Eng Mater 257 258 159 164 8 Hashimoto F Suzuki N Kanai A Miyashita M 1982 Critical range of set upconditions of centerless grinding and problem of safe machining operation J JSPE 48 8 996 1001 in Japanese 9 Krajnik P Drazumeric R Meyer B Kopac J Zeppenfeld C 2008 Simulation of workpiece forming and centre displacement in plunge centreless grinding Int J Mach Tools Manuf 48 824 831 10 Marinescu I D Hitchiner M Uhlmann E Rowe W B Inasaki I 2006 Handbookof Machining with Grinding Wheels CRC New York pp 521 522 11 Miyashita M Hashimoto F Kanai A 1982 Diagram for selecting chatter free conditions of centerless grinding Ann CIRP 31 1 221 223 12 Rowe W B Barash M M 1964 Computer method for investigating the inherentaccuracy of centerless grinding Int J Mach Tool Des Res 4 91 116 13 Rowe W B Bell W F 1986 Optimization studies in high removal rate centerless grinding Ann CIRP 35 1 235 238 14 Rowe W B Barash M M Koenigsberger F 1965 Some roundness characteristics of centerless grinding Int J Mach Tool Des Res 5 203 215 15 Wu Y Syoji K Kuriyagawa T Tachibana T 1996 Studies on centerless 桂林电
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 森林服务相关知识培训课件
- 桥梁监理安全知识培训课件
- 2025年外贸业务员招聘面试题及解析大全集
- 2025建筑安全员《C证》考试题库及答案
- 2025年设计笔试常见题含答案解析
- 2025年可持续发展与环境政策考试试题及答案
- 2025年数据分析师金融分析方向面试技巧与模拟题集
- 2025年金融风险管理师FRM考试指南与备考策略
- 2025年篮球理论试题及答案
- 2025年餐饮服务行业招聘考试模拟题集
- 2025年秋季学期第一次中层干部会议上校长讲话:凝心聚力明方向沉心落力干实事
- 医院患者身份识别核查流程规范
- 2025年北京市综合评标专家库专家考试历年参考题库含答案详解(5套)
- 2025年全国特种设备安全管理人员A证考试题库(含答案)
- 烟酒行经营合作合同范本
- 第23课 全民族抗战与抗日战争的胜利 2024-2025学年中职高一上学期高教版
- DGJ08-81-2015 现有建筑抗震鉴定与加固规程
- 《人为因素与航空法规》课件(共九章)
- 部编新课标培训课件
- 非工作时间行为协议
- 老年病人麻醉管理
评论
0/150
提交评论