高考数学大一轮复习 8.3直线、平面平行的判定与性质课件 理 苏教版.ppt_第1页
高考数学大一轮复习 8.3直线、平面平行的判定与性质课件 理 苏教版.ppt_第2页
高考数学大一轮复习 8.3直线、平面平行的判定与性质课件 理 苏教版.ppt_第3页
高考数学大一轮复习 8.3直线、平面平行的判定与性质课件 理 苏教版.ppt_第4页
高考数学大一轮复习 8.3直线、平面平行的判定与性质课件 理 苏教版.ppt_第5页
已阅读5页,还剩85页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8 3直线 平面平行的判定与性质 第八章立体几何 数学苏 理 基础知识 自主学习 题型分类 深度剖析 思想方法 感悟提高 练出高分 1 直线与平面平行的判定与性质 a a b a b a a a b a a b 2 面面平行的判定与性质 a b a b p a b a b 思考辨析 判断下面结论是否正确 请在括号中打 或 1 如果一个平面内的两条直线平行于另一个平面 那么这两个平面平行 2 如果两个平面平行 那么分别在这两个平面内的两条直线平行或异面 3 若直线a与平面 内无数条直线平行 则a 4 空间四边形abcd中 e f分别是ab ad的中点 则ef 平面bcd 5 若 直线a 则a 或 解析 因为 a 所以a 在平面 内存在无数条直线与直线a平行 但不是所有直线都与直线a平行 故命题 为真命题 命题 为假命题 在平面 内存在无数条直线与直线a垂直 故命题 为假命题 例1 2014 山东改编 如图 四棱锥p abcd中 ad bc ab bc ad e f h分别为线段ad pc cd的中点 ac与be交于o点 g是线段of上一点 1 求证 ap 平面bef 题型一直线与平面平行的判定与性质 解析 思维升华 证明连结ec 例1 2014 山东改编 如图 四棱锥p abcd中 ad bc ab bc ad e f h分别为线段ad pc cd的中点 ac与be交于o点 g是线段of上一点 1 求证 ap 平面bef 题型一直线与平面平行的判定与性质 bc綊ae 四边形abce是平行四边形 o为ac的中点 又 f是pc的中点 fo ap 解析 思维升华 解析 思维升华 fo 平面bef ap 平面bef ap 平面bef 例1 2014 山东改编 如图 四棱锥p abcd中 ad bc ab bc ad e f h分别为线段ad pc cd的中点 ac与be交于o点 g是线段of上一点 1 求证 ap 平面bef 题型一直线与平面平行的判定与性质 判断或证明线面平行的常用方法 1 利用线面平行的定义 无公共点 2 利用线面平行的判定定理 a b a b a 3 利用面面平行的性质定理 a a 4 利用面面平行的性质 a a a 例1 2014 山东改编 如图 四棱锥p abcd中 ad bc ab bc ad e f h分别为线段ad pc cd的中点 ac与be交于o点 g是线段of上一点 1 求证 ap 平面bef 题型一直线与平面平行的判定与性质 解析 思维升华 思维点拨 解析 思维升华 例1 2 求证 gh 平面pad 思维点拨 解析 思维升华 例1 2 求证 gh 平面pad 2 中可证明平面ohf 平面pad 思维点拨 解析 思维升华 证明连结fh oh f h分别是pc cd的中点 fh pd fh 平面pad 又 o是be的中点 h是cd的中点 例1 2 求证 gh 平面pad 思维点拨 解析 思维升华 oh ad oh 平面pad 又fh oh h 平面ohf 平面pad 又 gh 平面ohf gh 平面pad 例1 2 求证 gh 平面pad 思维点拨 解析 思维升华 例1 2 求证 gh 平面pad 判断或证明线面平行的常用方法 1 利用线面平行的定义 无公共点 2 利用线面平行的判定定理 a b a b a 3 利用面面平行的性质定理 a a 4 利用面面平行的性质 a a a 跟踪训练1 2013 福建改编 如图 在四棱锥p abcd中 pd 平面abcd ab dc ab ad bc 5 dc 3 ad 4 pad 60 1 若m为pa的中点 求证 dm 平面pbc 方法一证明如图 取pb中点n 连结mn cn 在 pab中 m是pa的中点 又cd ab cd 3 mn cd mn cd 四边形mncd为平行四边形 dm cn 又dm 平面pbc cn 平面pbc dm 平面pbc 方法二证明如图 取ab的中点e 连结me de 在梯形abcd中 be cd 且be cd 四边形bcde为平行四边形 de bc 又de 平面pbc bc 平面pbc de 平面pbc 又在 pab中 me pb me 平面pbc pb 平面pbc 又在 pab中 me pb me 平面pbc pb 平面pbc me 平面pbc 又de me e 平面dme 平面pbc 又dm 平面dme dm 平面pbc 2 求三棱锥d pbc的体积 题型二平面与平面平行的判定与性质 例2 2013 陕西 如图 四棱柱abcd a1b1c1d1的底面abcd是正方形 o为底面中心 a1o 平面abcd ab aa1 1 证明 平面a1bd 平面cd1b1 解析 思维升华 解析 思维升华 证明由题设知 bb1綊dd1 四边形bb1d1d是平行四边形 bd b1d1 又bd 平面cd1b1 b1d1 平面cd1b1 bd 平面cd1b1 题型二平面与平面平行的判定与性质 例2 2013 陕西 如图 四棱柱abcd a1b1c1d1的底面abcd是正方形 o为底面中心 a1o 平面abcd ab aa1 1 证明 平面a1bd 平面cd1b1 解析 思维升华 a1d1綊b1c1綊bc 四边形a1bcd1是平行四边形 a1b d1c 又a1b 平面cd1b1 d1c 平面cd1b1 a1b 平面cd1b1 又 bd a1b b 平面a1bd 平面cd1b1 题型二平面与平面平行的判定与性质 例2 2013 陕西 如图 四棱柱abcd a1b1c1d1的底面abcd是正方形 o为底面中心 a1o 平面abcd ab aa1 1 证明 平面a1bd 平面cd1b1 解析 思维升华 证明面面平行的方法 1 面面平行的定义 2 面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面 那么这两个平面平行 题型二平面与平面平行的判定与性质 例2 2013 陕西 如图 四棱柱abcd a1b1c1d1的底面abcd是正方形 o为底面中心 a1o 平面abcd ab aa1 1 证明 平面a1bd 平面cd1b1 解析 思维升华 3 利用垂直于同一条直线的两个平面平行 4 两个平面同时平行于第三个平面 那么这两个平面平行 5 利用 线线平行 线面平行 面面平行 的相互转化 题型二平面与平面平行的判定与性质 例2 2013 陕西 如图 四棱柱abcd a1b1c1d1的底面abcd是正方形 o为底面中心 a1o 平面abcd ab aa1 1 证明 平面a1bd 平面cd1b1 例2 2 求三棱柱abd a1b1d1的体积 解 a1o 平面abcd a1o是三棱柱abd a1b1d1的高 例2 2 求三棱柱abd a1b1d1的体积 跟踪训练2如图 在正方体abcd a1b1c1d1中 s是b1d1的中点 e f g分别是bc dc sc的中点 求证 1 直线eg 平面bdd1b1 证明如图 连结sb e g分别是bc sc的中点 eg sb 跟踪训练2如图 在正方体abcd a1b1c1d1中 s是b1d1的中点 e f g分别是bc dc sc的中点 求证 1 直线eg 平面bdd1b1 又 sb 平面bdd1b1 eg 平面bdd1b1 直线eg 平面bdd1b1 2 平面efg 平面bdd1b1 证明连结sd f g分别是dc sc的中点 fg sd 又 sd 平面bdd1b1 fg 平面bdd1b1 fg 平面bdd1b1 由 1 知 eg 平面bdd1b1 且eg 平面efg fg 平面efg eg fg g 平面efg 平面bdd1b1 题型三平行关系的综合应用 例3如图所示 在四面体abcd中 截面efgh平行于对棱ab和cd 试问截面在什么位置时其截面面积最大 思维点拨 解析 思维升华 思维点拨 解析 思维升华 利用线面平行的性质可以得到线线平行 可以先确定截面形状 再建立目标函数求最值 题型三平行关系的综合应用 例3如图所示 在四面体abcd中 截面efgh平行于对棱ab和cd 试问截面在什么位置时其截面面积最大 思维点拨 解析 思维升华 解 ab 平面efgh 平面efgh与平面abc和平面abd分别交于fg eh ab fg ab eh fg eh 同理可证ef gh 截面efgh是平行四边形 题型三平行关系的综合应用 例3如图所示 在四面体abcd中 截面efgh平行于对棱ab和cd 试问截面在什么位置时其截面面积最大 思维点拨 解析 思维升华 设ab a cd b fgh 即为异面直线ab和cd所成的角或其补角 又设fg x gh y 题型三平行关系的综合应用 例3如图所示 在四面体abcd中 截面efgh平行于对棱ab和cd 试问截面在什么位置时其截面面积最大 思维点拨 解析 思维升华 题型三平行关系的综合应用 例3如图所示 在四面体abcd中 截面efgh平行于对棱ab和cd 试问截面在什么位置时其截面面积最大 s efgh fg gh sin 思维点拨 解析 思维升华 题型三平行关系的综合应用 例3如图所示 在四面体abcd中 截面efgh平行于对棱ab和cd 试问截面在什么位置时其截面面积最大 x 0 a x 0且x a x a为定值 当且仅当x a x时 思维点拨 解析 思维升华 题型三平行关系的综合应用 例3如图所示 在四面体abcd中 截面efgh平行于对棱ab和cd 试问截面在什么位置时其截面面积最大 即当截面efgh的顶点e f g h为棱ad ac bc bd的中点时截面面积最大 思维点拨 解析 思维升华 利用线面平行的性质 可以实现与线线平行的转化 尤其在截面图的画法中 常用来确定交线的位置 对于最值问题 常用函数思想来解决 题型三平行关系的综合应用 例3如图所示 在四面体abcd中 截面efgh平行于对棱ab和cd 试问截面在什么位置时其截面面积最大 跟踪训练3如图所示 四棱锥p abcd的底面是边长为a的正方形 侧棱pa 底面abcd 在侧面pbc内 有be pc于e 且be a 试在ab上找一点f 使ef 平面pad 解在平面pcd内 过e作eg cd交pd于g 连结ag 在ab上取点f 使af eg eg cd af eg af 跟踪训练3如图所示 四棱锥p abcd的底面是边长为a的正方形 侧棱pa 底面abcd 在侧面pbc内 有be pc于e 且be a 试在ab上找一点f 使ef 平面pad 四边形fega为平行四边形 fe ag 又ag 平面pad fe 平面pad ef 平面pad 跟踪训练3如图所示 四棱锥p abcd的底面是边长为a的正方形 侧棱pa 底面abcd 在侧面pbc内 有be pc于e 且be a 试在ab上找一点f 使ef 平面pad f即为所求的点 又pa 面abcd pa bc 又bc ab bc 面pab pb bc 跟踪训练3如图所示 四棱锥p abcd的底面是边长为a的正方形 侧棱pa 底面abcd 在侧面pbc内 有be pc于e 且be a 试在ab上找一点f 使ef 平面pad pc2 bc2 pb2 bc2 ab2 pa2 由pb bc be pc得 跟踪训练3如图所示 四棱锥p abcd的底面是边长为a的正方形 侧棱pa 底面abcd 在侧面pbc内 有be pc于e 且be a 试在ab上找一点f 使ef 平面pad 跟踪训练3如图所示 四棱锥p abcd的底面是边长为a的正方形 侧棱pa 底面abcd 在侧面pbc内 有be pc于e 且be a 试在ab上找一点f 使ef 平面pad 答题模板系列5立体几何中的探索性问题 规范解答 温馨提醒 典例 14分 如图 在四棱锥s abcd中 已知底面abcd为直角梯形 其中ad bc bad 90 sa 底面abcd sa ab bc 2 tan sda 1 求四棱锥s abcd的体积 答题模板 规范解答 温馨提醒 解 sa 底面abcd tan sda sa 2 ad 3 由题意知四棱锥s abcd的底面为直角梯形 且sa ab bc 2 规范解答 温馨提醒 规范解答 温馨提醒 1 立体几何中的探索性问题主要是对平行 垂直关系的探究 对条件和结论不完备的开放性问题的探究 解决这类问题一般根据探索性问题的设问 假设其存在并探索出结论 然后在这个假设下进行推理论证 若得到合乎情理的结论就肯定假设 若得到矛盾就否定假设 2 这类问题也可以按类似于分析法的格式书写步骤 从结论出发 要使 成立 只需使 成立 规范解答 温馨提醒 答题模板 规范解答 温馨提醒 2 在棱sd上找一点e 使ce 平面sab 并证明 解当点e位于棱sd上靠近d的三等分点处时 可使ce 平面sab 取sd上靠近d的三等分点为e 取sa上靠近a的三等分点为f 连结ce ef bf 答题模板 规范解答 温馨提醒 bc綊ef ce bf 答题模板 规范解答 温馨提醒 又 bf 平面sab ce 平面sab ce 平面sab 答题模板 规范解答 温馨提醒 解决立体几何中的探索性问题的步骤 第一步 写出探求的最后结论 第二步 证明探求结论的正确性 第三步 给出明确答案 第四步 反思回顾 查看关键点 易错点和答题规范 答题模板 规范解答 温馨提醒 1 立体几何中的探索性问题主要是对平行 垂直关系的探究 对条件和结论不完备的开放性问题的探究 解决这类问题一般根据探索性问题的设问 假设其存在并探索出结论 然后在这个假设下进行推理论证 若得到合乎情理的结论就肯定假设 若得到矛盾就否定假设 2 这类问题也可以按类似于分析法的格式书写步骤 从结论出发 要使 成立 只需使 成立 方法与技巧 1 平行问题的转化关系 2 直线与平面平行的主要判定方法 1 定义法 2 判定定理 3 面与面平行的性质 3 平面与平面平行的主要判定方法 1 定义法 2 判定定理 3 推论 4 a a 失误与防范 1 在推证线面平行时 一定要强调直线不在平面内 否则 会出现错误 2 在解决线面 面面平行的判定时 一般遵循从 低维 到 高维 的转化 即从 线线平行 到 线面平行 再到 面面平行 而在应用性质定理时 其顺序恰好相反 但也要注意 转化的方向总是由题目的具体条件而定 决不可过于 模式化 3 解题中注意符号语言的规范应用 2 3 4 5 6 7 8 9 10 1 1 设 是两个不同的平面 m n是平面 内的两条不同的直线 l1 l2是平面 内的两条相交直线 则 的一个充分而不必要条件是 m 且l1 l1 且l2 m 且n m l1且n l2解析m l1 且n l2 但 m l1且n l2 m l1 且n l2 是 的一个充分不必要条件 2 3 4 5 6 7 8 9 10 1 2 若直线a平行于平面 则下列结论错误的是 填序号 a平行于 内的所有直线 内有无数条直线与a平行 直线a上的点到平面 的距离相等 内存在无数条直线与a成90 角 2 3 4 5 6 7 8 9 10 1 解析若直线a平行于平面 则 内既存在无数条直线与a平行 也存在无数条直线与a异面且垂直 所以 不正确 正确 又夹在相互平行的线与平面间的平行线段相等 所以 正确 答案 2 3 4 5 6 7 8 9 10 1 3 如图所示 四棱锥p abcd的底面是一直角梯形 ab cd ba ad cd 2ab pa 底面abcd e为pc的中点 则be与平面pad的位置关系是 2 3 4 5 6 7 8 9 10 1 解析取pd的中点f 连结ef af 又 ab cd 且cd 2ab ef綊ab 四边形abef为平行四边形 eb af 又 eb 面pad af 面pad be 面pad 答案平行 2 3 4 5 6 7 8 9 10 1 4 给出下列关于互不相同的直线l m n和平面 的三个命题 若l与m为异面直线 l m 则 若 l m 则l m 若 l m n l 则m n 其中真命题的个数为 2 3 4 5 6 7 8 9 10 1 解析 中当 与 不平行时 也可能存在符合题意的l m 中l与m也可能异面 答案1 5 下列四个正方体图形中 a b为正方体的两个顶点 m n p分别为其所在棱的中点 能得出ab 平面mnp的图形的序号是 2 3 4 5 6 7 8 9 10 1 解析 中易知np aa mn a b 平面mnp 平面aa b可得出ab 平面mnp 如图 中 np ab 能得出ab 平面mnp 答案 2 3 4 5 6 7 8 9 10 1 3 4 5 6 7 8 9 10 1 2 6 在四面体a bcd中 m n分别是 acd bcd的重心 则四面体的四个面中与mn平行的是 解析如图 取cd的中点e 则em ma 1 2 en bn 1 2 所以mn ab 所以mn 平面abd mn 平面abc 平面abd与平面abc 3 4 5 6 7 8 9 10 1 2 7 如图所示 abcd a1b1c1d1是棱长为a的正方体 m n分别是下底面的棱a1b1 b1c1的中点 p是上底面的棱ad上的一点 ap 过p m n的平面交上底面于pq q在cd上 则pq 3 4 5 6 7 8 9 10 1 2 解析 平面abcd 平面a1b1c1d1 mn pq m n分别是a1b1 b1c1的中点 3 4 5 6 7 8 9 10 1 2 8 在四面体abcd中 截面pqmn是正方形 则在下列结论中 错误的为 填序号 ac bd ac 截面pqmn ac bd 异面直线pm与bd所成的角为45 3 4 5 6 7 8 9 10 1 2 解析 pqmn是正方形 mn qp 则mn 平面abc 由线面平行的性质知mn ac 则ac 截面pqmn 同理可得mq bd 又mn qm 则ac bd 故 正确 又 bd mq 异面直线pm与bd所成的角即为 pmq 45 故 正确 答案 3 4 5 6 7 8 9 10 1 2 9 如图 在直三棱柱abc a1b1c1中 ab ac 5 bb1 bc 6 d e分别是aa1和b1c的中点 1 求证 de 平面abc 证明取bc中点g 连结ag eg 因为e是b1c的中点 所以eg bb1 3 4 5 6 7 8 9 10 1 2 由直棱柱知 aa1綊bb1 而d是aa1的中点 所以eg綊ad 所以四边形egad是平行四边形 所以ed ag 又de 平面abc ag 平面abc 所以de 平面abc 3 4 5 6 7 8 9 10 1 2 2 求三棱锥e bcd的体积 解因为ad eg eg 平面bce ad 平面bce 所以ad 平面bce 所以ve bcd vd bec va bce ve abc 由 1 知 de 平面abc 10 如图 e f g h分别是正方体abcd a1b1c1d1的棱bc cc1 c1d1 aa1的中点 求证 1 eg 平面bb1d1d 3 4 5 6 7 8 9 10 1 2 证明取b1d1的中点o 连结go ob 易证四边形bego为平行四边形 故ob ge 由线面平行的判定定理即可证eg 平面bb1d1d 3 4 5 6 7 8 9 10 1 2 2 平面bdf 平面b1d1h 证明由题意可知bd b1d1 如图 连结hb d1f 易证四边形hbfd1是平行四边形 故hd1 bf 又b1d1 hd1 d1 bd bf b 所以平面bdf 平面b1d1h 2 3 4 5 1 1 对于平面 和共面的直线m n 下列命题中为真命题的是 若m n与平面 所成的角相等 则m n 若m n 则m n 若m m n 则n 若m n 则m n 2 3 4 5 1 解析正三棱锥p abc的侧棱pa pb与底面所成角相等 但pa与pb相交 应排除 若m n 则m与n平行或相交 应排除 若m m n 则n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论