




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3.4圆与圆的位置关系学 习 目 标核 心 素 养1掌握圆与圆的位置关系及判定方法(重点)2了解两圆相交或相切时一些简单的几何性质的应用(重点)3掌握利用圆的对称性灵活解决问题的方法(难点)1通过学习圆与圆的位置关系,培养直观想象的核心素养2借助圆与圆的位置关系的判断,培养数学运算的核心素养.1圆与圆的位置关系圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含2圆与圆的位置关系的判定(1)几何法:若两圆的半径分别为r1、r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系dr1r2dr1r2|r1r2|dr1r2d|r1r2|0d|r1r2|(2)代数法:通过两圆方程组成方程组的公共解的个数进行判断一元二次方程1两圆x2y2r2与(x2)2(y1)2r2(r0)外切,则r的值是()AB5CD2C两圆外切,圆心距d2r,解得r.2两圆x2y29和x2y28x6y90的位置关系是()A外离B相交C内切D外切B两圆x2y29和x2y28x6y90的圆心分别为(0,0)和(4,3),半径分别为3和4.所以两圆的圆心距d5.又43534,故两圆相交3已知两圆x2y210和(x1)2(y3)220相交于A,B两点,则直线AB的方程是_x3y0圆的方程(x1)2(y3)220可化为x2y22x6y10,又x2y210,两式相减得2x6y0,即x3y0.圆与圆位置关系的判定【例1】当实数k为何值时,两圆C1:x2y24x6y120,C2:x2y22x14yk0相交、相切、相离?思路探究解将两圆的一般方程化为标准方程,C1:(x2)2(y3)21,C2:(x1)2(y7)250k.圆C1的圆心为C1(2,3),半径r11;圆C2的圆心为C2(1,7),半径r2(k50)从而|C1C2|5.当15,k34时,两圆外切当|1|5,6,k14时,两圆内切当|r2r1|C1C2|r2r1,即14k34时,两圆相交当15或|1|5,即0k14或34k50时,两圆相离1判断两圆的位置关系或利用两圆的位置关系求参数的取值范围问题有以下几个步骤:(1)化成圆的标准方程,写出圆心和半径;(2)计算两圆圆心的距离d;(3)通过d,r1r2,|r1r2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合2应用几何法判定两圆的位置关系或求字母参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系1已知圆C1:x2y22ax2ya2150,圆C2:x2y24ax2y4a20(a0)试求a为何值时,两圆C1,C2的位置关系为:(1)相切;(2)相交;(3)外离;(4)内含解圆C1,C2的方程,经配方后可得C1:(xa)2(y1)216,C2:(x2a)2(y1)21,圆心C1(a,1),C2(2a,1),半径r14,r21.|C1C2|a.(1)当|C1C2|r1r25,即a5时,两圆外切;当|C1C2|r1r23,即a3时,两圆内切(2)当3|C1C2|5,即3a5时,两圆相交(3)当|C1C2|5,即a5时,两圆外离(4)当|C1C2|3,即0a3时,两圆内含两圆相交的有关问题【例2】(1)圆O1:x2y24x6y0和圆Q2:x2y26x0交于A,B两点,则线段AB的垂直平分线的方程是_(2)经过两圆x2y26x40和x2y26y280的交点且圆心在直线xy40上的圆的方程为_(1)3xy90(2)x2y2x7y320(1)两圆的方程相减得AB的方程为x3y0,圆O1的圆心为(2,3),所以线段AB的垂直平分线的方程为y33(x2),即3xy90.(2)解方程组得两圆的交点A(1,3),B(6,2)设所求圆的圆心为(a,b),因圆心在直线xy40上,故ba4.则有,解得a,故圆心为,半径为.故圆的方程为,即x2y2x7y320.1求两圆的公共弦所在直线的方程的方法:将两圆方程相减即得两圆公共弦所在直线方程,但必须注意只有当两圆方程中二次项系数相同时,才能如此求解,否则应先调整系数2求两圆公共弦长的方法:一是联立两圆方程求出交点坐标,再用距离公式求解;二是先求出两圆公共弦所在的直线方程,再利用半径长、弦心距和弦长的一半构成的直角三角形求解3已知圆C1:x2y2D1xE1yF10与圆C2:x2y2D2xE2yF20相交,则过两圆交点的圆的方程可设为x2y2D1xE1yF1(x2y2D2xE2yF2)0(1)2求两圆x2y22x10y240和x2y22x2y80的公共弦所在直线的方程及公共弦长解联立两圆的方程得方程组两式相减得x2y40,此即为两圆公共弦所在直线的方程法一:设两圆相交于点A,B,则A,B两点坐标满足方程组解得或所以|AB|2,即公共弦长为2.法二:由x2y22x10y240,得(x1)2(y5)250,其圆心坐标为(1,5),半径长r5,圆心到直线x2y40的距离为d3.设公共弦长为2l,由勾股定理得r2d2l2,即50(3)2l2,解得l,故公共弦长2l2.圆与圆的相切问题探究问题1圆与圆相切是什么意思?提示 两圆相切指得是内切和外切两种情况2两圆相切可用什么方法求解?提示(1)几何法,利用圆心距d与两半径R,r之间的关系求得dRr为外切,d|Rr|为内切(2)代数法,将两圆联立消去x或y得到关于y或x的一元二次方程,利用0求解【例3】求与圆x2y22x0外切且与直线xy0相切于点M(3,)的圆的方程思路探究设圆的方程,利用两圆外切和直线与圆相切建立方程组求得解设所求圆的方程为(xa)2(yb)2r2(r0),由题知所求圆与圆x2y22x0外切,则r1.又所求圆过点M的切线为直线xy0,故.r.解由组成的方程组得a4,b0,r2或a0,b4,r6.故所求圆的方程为(x4)2y24或x2(y4)236.1将本例变为“求与圆x2y22x0外切,圆心在x轴上,且过点(3,)的圆的方程”,如何求?解因为圆心在x轴上,所以可设圆心坐标为 (a,0),设半径为r,则所求圆的方程为(xa)2y2r2,又因为与圆x2y22x0外切,且过点(3,),所以解得所以圆的方程为(x4)2y24.2将本例改为“若圆x2y22x0与圆x2y28x8ym0相外切,试求实数m的值”解圆x2y22x0的圆心为A(1,0),半径为r11,圆x2y28x8ym0的圆心为B(4,4),半径为r2.因为两圆相外切,所以1,解得:m16.处理两圆相切问题的两个步骤1定性,即必须准确把握是内切还是外切,若只是告诉相切,则必须考虑分两圆内切还是外切两种情况讨论2转化思想,即将两圆相切的问题转化为两圆的圆心距等于两圆半径之差的绝对值(内切时)或两圆半径之和(外切时)1本节课的重点是理解并掌握圆与圆的位置关系,会利用方程判断圆与圆的位置关系,以及解决有关问题,难点是利用方程判断圆与圆的位置关系及利用直线与圆的方程解决简单的实际生活问题2本节课要重点掌握的规律方法(1)判断两圆位置关系的方法及应用(2)求两圆公共弦长的方法3本节课的易错点是判断两圆位置关系时易忽略相切的两种情况而丢解.1判断(正确的打“”,错误的打“”)(1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切()(2)如果两圆的圆心距小于两圆的半径之和,则两圆相交()(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程()答案(1)(2)(3)提示(1)错误,还可能是内切(2)错误,还需要大于两半径之差的绝对值(3)错误,在相交的情况才是2圆O1:x2y22x0和圆O2:x2y24y0的位置关系为()A外离B相交C外切D内切B圆O1的圆心坐标为(1,0),半径长r11;圆O2的圆心坐标为(0,2),半径长r22;1r2r1|O1O2|r1r23,即两圆相交3圆C1:(xm)2(y2)29与圆C2:(x1)2(ym)24外切,则m的值为_2或5C1(m,2),r13,C2(1,m),r22,由题意得|C1C2|5,即(m1)2(m2)225,解得m2或m5.4已知圆C1:x2y2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 时间管理学全套课件
- 琥珀创意画课件
- 时间像小马车歌曲课件
- 二零二五年度高端冷链物流货物运输服务合同
- 2025版电梯门禁系统升级与维护服务合同
- 2025版能源供应与分销合作协议范本
- 2025版环卫工人岗位技能培训与劳动合同
- 二零二五年度二手设备买卖协议书及二手设备租赁合同
- 二零二五年高空作业墙面粉刷及安全协议
- 2025版广告策划执行公司员工劳动合同标准范本
- 2025规范家居装修协议
- 2025年广西继续教育公需科目考试试题及答案贯彻创新驱动发展战略打造
- 2025秋苏教版科学三年级上册教学设计(附目录)
- 《初中必读名著导读:《水浒传》核心知识点与深度解读》
- “安全生产责任制”培训试题及答案
- 地调考试试题及答案2025
- 诊断学血管检查
- 2025年腾讯智慧零售日化行业数字化解决方案-腾讯云
- 项目投资评估管理办法
- 哪个团队收益大+课件2025-2026学年+北师大版(2024)八年级数学上册
- 带括号解方程练习题100道
评论
0/150
提交评论