




已阅读5页,还剩33页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
成才之路 数学 路漫漫其修远兮吾将上下而求索 北师大版 必修4 三角函数 第一章 6余弦函数的图像与性质 第一章 现实世界中的许多运动 变化都有着循环往复 周而复始的现象 这种变化规律称为周期性 例如 地球自转引起的昼夜交替变化和公转引起的四季交替变化 月亮圆缺变化的周期性 即朔 上弦 望 下弦 朔 潮汐变化的周期性 即海水在月球引力作用下发生的周期性涨落现象 物体做匀速圆周运动时位置变化的周期性 做简谐运动的物体的位移变化的周期性 交变电流变化的周期性 如何用数学的方法来刻画这种变化规律呢 1 余弦函数的图像 1 余弦函数y cosx的图像可以通过将正弦曲线y sinx 单位长度得到 2 余弦函数y cosx x r 的图像叫作 图像如下 余弦曲线 3 用五点法作余弦函数的图像 余弦曲线上有五个点起关键作用 这五个点是 0 1 1 2 1 2 余弦函数的性质 r 1 1 2k 1 2k 1 1 2 2k 2k 2k 2k 偶 y x k k z 3 函数f x cosx x r是 a 最小正周期为 的偶函数b 最小正周期为 的奇函数c 最小正周期为2 的偶函数d 最小正周期为2 的奇函数 答案 c 解析 最小正周期为2 f x cos x cosx f x 所以f x 是偶函数 用 五点法 画函数y cosx x 0 2 的简图 思路分析 运用 五点法 作图 正确找出五个点是作图的关键 用 五点法 作图 规范解答 解法一 按五个关键点列表 描点画图 如图所示 解法二 先用五点法画y cosx的图像 再作它关于x轴的对称图像 规律总结 五点法 画函数图像是一项重要的基本技能 必须熟练掌握 复杂函数的图像可以化归为基本函数来画 也可借助于图像变换的方法 如平移 对称 翻折等 这些将在后文中讲到 用五点法作出函数y 3 2cosx在一个周期内的图像 解析 列表 描点得y 3 2cosx在一个周期内的图像 如图所示 求下列函数的定义域 求余弦函数的定义域 规律总结 前面学习的求函数定义域的方法对余弦函数仍然适用 在此特别强调 要充分利用余弦函数的图像或单位圆解有关余弦不等式 准确写出解集 求函数的值域 最值 规范解答 1 1 cosx 1 又 一次函数y 3m 1在m r上是单调减函数 当cosx 1时 ymax 4 当cosx 1时 ymin 2 规律总结 形如y acos2x bcosx c a 0 的三角函数最值问题常利用二次函数的思想转化成在给定区间 m n 上求二次函数最值的问题 解答时依然采用数形结合的思想加以分析 必要时要分区间讨论转化成常见的 轴变区间定 或 轴定区间变 问题 求下列函数的单调区间 1 y 3cosx 1 2 y cos2x 思路分析 根据y cosx的单调区间求 规范解答 1 画出函数y 3cosx 1的简图 略 可知y 3cosx 1的单调区间与y cosx的单调区间相同 即单调递增区间为 2k 2k k z 单调递减区间为 2k 2k k z 函数的单调性 规律总结 求形如y cos x 0 的函数的单调区间 可以通过解不等式的方法来解答 列不等式的原则是 把 x 0 看作一个整体 代入y cosx的单调区间的范围内 求出x的范围即为对应的单调区间 分析 利用诱导公式转化为单调区间 0 上来比较大小 错解 a或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 胸壁引流管的护理
- 《羿射九日》课件
- 公司消费安全培训建议课件
- 行政许可法律解读课件
- 急性心肌梗死的识别与护理
- 2025输送带设备采购合同范本
- 2025简易供求合同协议
- 广东省汕尾市陆丰市2023-2024学年高一上学期期中考试语文试题及答案
- 项目经理岗位年终工作总结
- 2025年期货居间人合同范本
- 采购管理 关于印发《中国联通采购管理办法》的通知学习资料
- 老年社会支持网络的构建与效果评估-全面剖析
- 学生午托安全管理制度
- 2025-2030中国腹内压测量装置行业市场发展趋势与前景展望战略分析研究报告
- 养老院护理九防内容课件
- 人教版三年级数学上册教学计划(及进度表)
- 幼儿园获奖公开课:小班科学《我的朋友在哪里》课件
- 不要慌太阳下山有月光二部合唱线谱
- 光伏维护合同范本
- 房产查封申请书
- 2024年新疆伊犁州直检察机关招聘聘用制书记员笔试真题
评论
0/150
提交评论