




免费预览已结束,剩余7页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高等数学在物理学中的实际应用摘要:通过运用高等数学的思想来解决物理问题,阐明了高等数学与物理学之间的联系,提高分析问题和解决问题的能力。关键词:高等数学 物理学 抽象性 实际应用高等数学是物理学研究和发展不可缺少的理论思维工具,它具有高度的抽象性,结论的精确性和广泛的应用性。数学知识对于物理学科来说,决不仅仅是一种数量分析和运算工具,更重要的是物理概念的定义工具和物理定理、原理的推导工具;另外,运用数学方法研究物理问题本身就是一种重要的抽象思维。因此,数学也是研究物理问题进行科学抽象和思维推理的工具。数学和物理从来是没有分开过的,这就好比父母和孩子一样。有人说哲学是科学的母亲,而数学就是科学的父亲。然而我们看到的是在物理学的发展道路中,哲学起到的作用是指导性的,甚至有的时候是从物理问题中才能得到更多的深化。而数学起到的作用是具体的。一个理论有没有生命力的基本条件就是数学表述是否正确完善,是否和物理定律界定的条件配合得很好,或者和客观实验符合得很好。当这种符合度到达一定程度之后,物理理论就会反过来赋予数学描述以生命力。 数学对于物理的影响是很深远的,但是也不能说明数学和物理的关系有很分明的先后关系。有的数学问题是从物理现象中抽象出来的,而有的数学表述方式也是因为有了物理理论才有了意义。 用微积分来说明,微积分是数学中比较基本的一支,基本上近现代数学的每一个分支都要用到微积分的理论。而微积分的理论基础是极限,而极限的思想就是牛顿在研究物质运动的时候提出来的。在这以后的复变函数、积分变换、无穷级数等等,都成为研究物理学的有效描述工具。对于不同的体系和对象,我们所用到的数学工具是不相同的。有的是方法上的不同,有的则是知识体系的不同。例如在量子力学中,曾经就有三种描述的方式,薛定谔的波动方程,这是一种微分方程;海森堡的矩阵量子力学;狄拉克的高等量子力学,也就是相对论量子力学的描述方程。这三种表述的方式侧重点是不同的,但是都做到了同样的表述目的。而在凝聚态物理当中,我们更多的用到泛函分析。这些数学工具的理论基础有的是相同的,但有的不是。从这一点我们也可以看到,物理和数学之间的关系是一种相互影响,甚至是相互依存的关系。 除此之外还有概率论和数理统计,也是对于物理学贡献非常大的一门学科。 物理学的研究,特别是理论物理,谁高明,很大程度上就在于对于数学的运用,数学的高明。把物理的现象抽象成数学的定解混合问题,就是我们的基本要求,而这并不像有的人所说的数学好物理自然会好,因为有很多的数学方法和问题是通过物理来体现的,怎么让它体现出来,这才是物理的真正目的,而不是单纯的利用现有的数学公式。 举几个例子: 1.复变函数对于电磁学方面的贡献是显著的;2.数学的场论几乎只要有物质运动的地方都可以去利用研究;3.数理统计在热力学、量子力学方面的贡献很大;4.其他的还有很多方法,积分变换在电磁学中也是经常用到的,黎曼几何、张量在广义相对论中是主要的工具;5.泛函分析在凝聚态物理中很有用处;6.光学里面有很多的分支学科,欧几里得几何在几何光学中的应用,波动光学要用到波动函数,量子光学要用到量子力学中的数学工具等等。具体应用:一、导数与微分的应用分析 利用导数与微分的概念与运算,可解决求变化率的问题。求物体的运动速度、加速度的问题是典型的求变化率问题。在求解这类问题时,应结合问题的物理意义,明确是在对哪个变量求变化率。在此基础上,灵活运用各类导数和微分公式解决具体问题。例1 如图,曲柄以均匀角速度饶定点转动.此曲柄借连杆使滑块沿直线运动.求连杆上点的轨道方程及速度.设 解 1) 如图,点的坐标为: , (1) (2) 由三角形的正弦定理,有 B 故得 (3)由(1)得 (4)由得化简整理,得点的轨道方程为:2) 要求点的速度,首先对(1),(2)分别求导,得 其中又因为 对该式两边分别求导,得 所以点的速度 例2 若一矿山升降机作加速度运动时,其加速度为式中及为常数,已知升降机的初速度为零,试求运动开始秒后升降机的速度及其所走过的路程.解: 由题设及加速度的微分形式,有对等式两边同时积分得:其中为常数.由初始条件:得于是又因为得对等式两边同时积分,可得:例3 宽度为的河流,其流速与到河岸的距离成正比。在河岸处,水流速度为零,在河流中心处,其值为 一小船以相对速度沿垂直于水流的方向行驶,求船的轨迹以及船在对岸靠拢的地点。解 以一岸边为轴,垂直岸的方向为轴,如图建立坐标系。所以水流速度为 由河流中心处水流速度为,故,所以.当时,即 (1)得.两边积分,有, (2)由(1)-(2),得 . (3)同理,当时,即, (4)其中为一常数。由(3)知,当时,代入(4),得,于是 .所以船的轨迹为船在对岸的靠拢地点,即时有例4 将质量为的质点竖直抛上于有阻力的媒质中。设阻力与速度平方成正比,即 如上掷时的速度为,试证此质点又落至投掷点时的速度为解:质点从抛出到落回抛出点分为上升和下降两阶段。取向上的力为正,如图,两个过程的运动方程为: 上升: 。 。下降: 上升时 下降时 对上升的阶段:,即于是. 两边积分,得质点到达的高度. (1)对下降的阶段:即得,得. (2)由(1)=(2) 得二、积分的应用分析 利用积分的概念与运算,可解决一些关于某个区域累积量的求解问题。求物体的转动惯量、求电场强度等问题都是典型的求关于某个区域累积量的问题。在求解这类问题时,应结合问题的物理意义,明确是在对哪个变量,在哪个区域上进行累积。并应充分利用区域的对称性,这样可将复杂的积分问题简化,降低积分的重数,较简捷地解决具体问题。例5 一半径为的非均质圆球,在距中心处的密度为:式中和都是常数。试求此圆球饶直径转动时的回转半径。解:设表示距球心为的一薄球壳的质量,则,所以此球对球心的转动惯量为 (1)在对称球中,饶直径转动时的转动惯量为, (2)又因球的质量为 (3)又饶直径的回转半径 (4)由(1)-(4),得例6 试证明立方体饶其对角线转动时的回转半径为,式中为对角线的长度。解:建立坐标系,设为立方体的中心,轴分别与立方体的边平行。由对称性知,轴即立方体中心惯量的主轴。设立方体的边长为由以上所设,平行于轴的一小方条的体积为,于是立方体饶的转动惯量为根据对称性得:易知立方体的对角线与轴的夹角都为且故立方体饶对角线的转动惯量为 (1)又由于 , (2)绕其对角线转动时的回转半径为 (3)由(1)-(3)得例7 一个塑料圆盘,半径为电荷均匀分布于表面,圆盘饶通过圆心垂直盘面的轴转动,角速度为,求圆盘中心处的磁感应强度。解:电荷运动形成电流,带电圆盘饶中心轴转动,相当于不同半径的圆形电流。圆盘每秒转动次数为,圆盘表面上所带的电荷面密度为,在圆盘上取一半径为,宽度为的细圆环,它所带的电量为,圆盘转动时,与细圆环相当的圆环电流的电流强度为,它在轴线上距盘心处的点所产生的磁感应强度为故点处的总磁感应强度为变换积分所以,的方向与方向相同()或(.于是在圆盘中心处,磁感应强度例8 雨滴下落时,其质量的增加率与雨滴的表面积成正比,求雨滴速度与时间的关系。解:设雨滴的本体为由物理学知 (1)1) 在处理这类问题时,常常将模型的几何形状理想化。对于雨滴,我们常将它看成球形,设其半径为则雨滴质量是与半径的三次方成正比,密度看成是不变的,于是, (2)其中为常数。2) 由题设知,雨滴质量的增加率与其表面积成正比,即 (3)其中为常数。由(2),得 (4)由(3)=(4),得 (5)对(5)两边积分:得 (6)将(6)代入(2),得 (7)3)以雨滴下降的方向为正,分析(1)式 (8)(为常数)当时,故三、曲线、曲面积分的应用分析 曲线、曲面积分的概念与运算在物理学中应用非常广泛,灵活应用曲线、曲面积分,往往能使问题得到简化。在求磁感应强度、磁通量这类问题时,高斯公式往往是有效的。例9 设力其中验证为保守力,并求出其势能。解:为验证是否为保守力,将题设中力的表达式代入,得: 于是是保守力。故其势能为例10 一个半径为的球体内,分布着电荷体密度式中是径向距离,是常量。求空间的场强分布,并求与的关系。解:(1)由于在球体内电荷是球对称分布的,故产生的电场也是球对称分布的,因此可用高斯定理求解。取与球面同心的球面作为高斯面。1) 当时,, 而, (1) (2)由(1)=(2),得方向为径向方向。2) 当时,由高斯定理, 有, (3) (4)由(3)=(4),得方向沿径向方向。例11 一根很长的铜导线,载有电流10,在导线内部通过中心线作一平面试计算通过导线长的平面内的磁感应通量。解:由电流分布具有轴对称性可知,其产生的磁场也具有轴对称性,以下用安培环路定理求解。取以轴线为圆心的半径为的同心圆环为积分环路,由安培环路定理,有, (1) (2)由(1)=(2),所以有在剖面上取面积微元,有所以单位长的导线内通过剖面的磁通量为例12 在半径为的金属球之外包有一层均匀介质层,外半径为设电介质的相对电容率为金属球的电荷量为求:1) 介质层内、外的场强分布;2) 介质层内、外的电势分布;3) 金属球的电势。解:1)由高斯定理,可得2) 由电势定义,有 3) 当时,有总之,物理学的发展
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光合作用原理与应用课件
- 2025版特色小镇整体物业承包服务合同
- 2025年酒店餐饮业绿色食材供应与追溯体系合同
- 缪惠二零二五版离婚协议书设计合同
- 光合作用与细胞呼吸课件
- 护士院感工作汇报
- 护士进修课件
- 土壤普查费用预算方案(3篇)
- 加盟商招商方案(3篇)
- 阳江足球场照明施工方案
- 图解自然资源部《自然资源领域数据安全管理办法》
- GB/T 15155-1994滤波器用压电陶瓷材料通用技术条件
- PDCA质量持续改进案例一:降低ICU非计划拔管发生率
- 2023年烟台蓝天投资开发集团有限公司招聘笔试题库及答案解析
- 企业标准编写模板
- 初中道德与法治 九年级(维护祖国统一)初中道德与法治九年级作业设计样例
- 幼儿园绘本故事:《骄傲的大公鸡》 课件
- 江西省赣州市于都县2022-2023学年九年级化学第一学期期中监测试题含解析
- 新冠核酸检测实验室PCR管八联管滤芯吸头等耗材质检和储存程序
- 通止规、环通止规检查记录表
- 模版协议认购协议东方国际广场七号楼购房确认书(最新修改)
评论
0/150
提交评论