




已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南工业职业技术学院机电工程系毕业设计河 南 工 业 职 业 技 术 学 院Henan Polytechnic Institute2011届毕业设计(论文)题 目班 级姓 名指导教师摘要近年来,高速发展的经济和工业技术,为我国传感器技术的发展提供了良好的条件。我国的工业技术越来越离不开传感器的发展,尤其是在工业机器人中的应用,并由此产生了客观的经济效益。与此同时,我国的传感器技术在工业发展中的应用不足也日益突出,为使传感器技术能够在工业应用中持续良好的应用,文章主要分析了传感器的发展形势,在工业机器人中工作原理,以及与国外的差距,及我国当前应该在传感器技术上朝着怎样的方向发展,做怎样的出的努力,力争能在国际行业中遥遥领先。关键词:传感器 , 工业技术 , 工业机器人AbstractIn recent years, the high speed development of economy and industrial technology, for the development of our country sensor technology to provide a good conditions. Chinas industrial technology is more and more cannot leave sensor development, especially the application in industrial robots, and produced the objective economic benefits. At the same time, Chinas sensor technology in the development of industry application disadvantages have become increasingly prominent, to make the sensor technology can in industrial applications for good application, this paper analyzes the development situation of the sensor in the industrial robot working principle, and the gap with foreign countries, and at present in our country should be in the sensor technology toward the direction of the development on how, how do the efforts, in the international industry can to lead.Key words:sensor Industrial technology Industrial robots 目录目录第1章 传感器的简介11.1 传感器的定义11.2 传感器的组成11.3传感器的应用21.4传感器的分类3第二章、常用传感器的类型、特点、结构及用途42.1 电阻式传感器42.3 电感式传感器72.4 压电式传感器92.5 霍尔式传感器10第三章、传感器在机器人系统中的作用及地位13第四章、机器人系统中传感器的选择及工作原理134.1机器人中传感器的分类134.2内部传感器的选择144.21位置传感器的工作原理144.22角度传感器工作原理224.23速度传感器工作原理314.24加速度传感器工作原理334.3外部传感器选择354.31视觉传感器的工作原理35432听觉感器的工作原理、364.33触觉感器的工作原理38第五章、我国传感器技术的发展趋势425.1 与国外的差距425.2 今后的发展趋势43六结论44传感器在机器人系统中的应用第1章 传感器的简介 1.1 传感器的定义信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。微处理器现在已经在测量和控制系统中得到了广泛的应用。随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。1.2 传感器的组成传感器由敏感元件和转换元件组成,如图所示敏感元件 指传感器中能直接感受或响应被测量的部分。转换元件 指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。信号调理与转换电路 对信号进行放大、运算调制等,此外信号调理转换电路以及传感器的工作必须有辅助电源1.3传感器的应用人们为了从外界获取信息,必须借助于感觉器官。而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。 新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。 在基础学科研究中,传感器更具有突出的地位。现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到 cm的粒子世界,纵向上要观察长达数十万年的天体演化,短到 s的瞬间反应。此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁场等等。显然,要获取大量人类感官无法直接获取的信息,没有相适应的传感器是不可能的。许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破。一些传感器的发展,往往是一些边缘学科开发的先驱。 角度传感器常见的应用有: 1.自动门,利用人体的红外微波来开关门 2.烟雾报警器,利用烟敏电阻来测量烟雾浓度,从而达到报警目的 3.手机,数码相机的照相机,利用光学传感器来捕获图象 4.电子称,利用力学传感器(导体应变片技术)来测量物体对应变片的压力,从而达到测量重量目的 5.水位报警,温度报警,湿度报警,光学报警等都是 智能传感器已广泛应用于航天、航空、国防、科技和工农业生产等各个领域中。例如,它在机器人领域中有着广阔应用前景,智能传感器使机器人具有类人的五官和大脑功能,可感知各种现象,完成各种动作。在工业生产中,利用传统的传感器无法对某些产品质量指标(例如,黏度、硬度、表面光洁度、成分、颜色及味道等)进行快速直接测量并在线控制。而利用智能传感器可直接测量与产品质量指标有函数关系的生产过程中的某些量(如温度、压力、流量等)。Cygnus公司生产了一种葡萄糖手表,其外观像普通手表一样,戴上它就能实现无疼、无血、连续的血糖测试。葡萄糖手表上有一块涂着试剂的垫子,当垫子与皮肤接触时,葡萄糖分子就被吸附到垫子上,并与试剂发生电化学反应,产生电流。传感器测量该电流,经处理器计算出与该电流对应的血糖浓度,并以数字量显示。1.4传感器的分类传感器的种类很多,其分类方法如表1所示。表1 传感器的分类分 类 法型 式说 明按基本效应物理型、化学型、生物型分别以转换中的物理效应、化学效应等命名按构成原理结构型以转换原件结构参数变化实现信号的转换物性型以转换元件物理特性变化实现信号的转换按输入量角度、位移、压力、温度、流量、加速度等以被测量(即按用途分类)按工作原理电阻式、热电式、光电式等以传感器转换信号的工作原理命名按能量关系能量转换型(自然型)传感器输出量直接由被测量能量转换而得能量转换型(外源型)传感器输出量能量由外源供给,但受被测输入量控制按输出信号形式模拟式输出为模拟信号数字式输出为数字信号 第二章、常用传感器的类型、特点、结构及用途传感器已广泛应用于航天、航空、国防科研、信息产业、机械、电力、能源、交通、冶金、石油、建筑、邮电、生物、医学、环保、材料、灾害预测预防、农林、渔业生产、食品、烟酒制造、机器人、家电等诸多领域,可以说几乎渗透到每个领域。2.1 电阻式传感器电阻式传感器是把被测量转换为电阻变化的一种传感器.按工作的原理可分为:变阻器式、电阻应变式、热敏式、光敏式、电敏式。(1) 变阻器式传感器变阻器式传感器的等效电路如下图:如果电阻丝的直径和材料确定,单位位移的电阻值为一常数,传感器的输出与输入成线性关系。 变阻式传感器又称为电位器式传感器。它们是由电阻元件及电刷(活动触点)两个基本部分组成。电刷相对于电阻元件的运动可以是直线运动、转动和螺旋运动,因而可以将直线位移或角位移转换为与其成一定函数关系的电阻或电压输出。这类传感器结构简单,尺寸小,性能稳定。受环境影响小。不需放大。滑线变阻器式传感器精度可达0.1。在生活中,应用实例诸多,如重量的自动检测-配料设备、煤气包储量检测等。(2)电阻应变式传感器电阻应变式传感器由弹性敏感元件、电阻应变计、补偿电阻和外壳组成,可根据具体测量要求设计成多种结构形式。弹性敏感元件受到所测量的力而产生变形,并使附着其上的电阻应变计一起变形。电阻应变计再将变形转换为电阻值的变化,从而可以测量力、压力、扭矩、位移、加速度和温度等多种物理量。电阻应变式传感器是基于电阻应变片的使用,金属电阻应变片的工作原理是基于金属导体的应变效应,即金属导体在外力作用下发生机械变形时,其电阻值随着它所受机械变形(伸长或缩短)的变化而发生变化的现象。金属应变片的电阻相对变化为 , 称为金属电阻丝的轴向应变,简称纵向应变。称为电阻丝的径向应变,简称横向应变。当电阻丝沿横向伸长时,两者之间的关系为,其中为电阻丝材料的泊桑比,则,金属电阻材料的很小,即其压阻效应很弱,这样上式可简化为,其灵敏度为。为了将电阻应变式传感器的电阻变化转换成电压或电流信号,在应用中一般采用电桥电路作为其测量电路。电桥电路具有结构简单、灵敏度高、测量范围宽、线性度好且易实现温度补偿等优点。能较好地满足各种应变测量要求,因此在应变测量中得到了广泛的应用。电桥电路按辅助电源分有直流电桥和交流电桥,由于直流电桥的输出信号在进一步放大时易产生零漂,故交流电桥的应用更为广泛。直流电桥只用于较大应变的测量,交流电桥可用于各种应变的测量。 电桥电路按其工作方式分有单臂、双臂和全桥三种。直流电桥的连接方式a)半桥单臂b)半桥双臂c)全桥金属应变片的稳定性和温度特性好,但其灵敏度小;而半导体应变片应变灵敏度大;体积小;能制成具有一定应变电阻的元件,但它的缺点是温度稳定性和可重复性不如金属应变片。它的应用实例如桥梁固有频率测量、电子称、桶式测力传感器等。电子称2.2 电容式传感器把被测的机械量,如位移、压力等转换为电容量变化的传感器。它的敏感部分就是具有可变参数的电容器。其最常用的形式是由绝缘介质分开的两个平行金属板组成的平板电容器,若不考虑边缘效应,其电容量为当被测参数变化使得上式中的A、d 或 发生变化时,电容量C也随之变化。若保持其中两个参数不变,而仅改变其中一个参数,就可把该参数的变化转换为电容量的变化,通过测量电路就可转换为电量输出。电容式传感器的等效电路如图:电容式传感器的测量电路同样为电桥电路,如下图:电容式传感器的温度稳定性好,结构简单,动态响应好,可进行非接触测量,然而,输入阻抗高,负载能力差4。电容式传感器精度可达0.01。其运用实例有电容传声器、转速测量、电容测厚仪、电容式油量表等。2.3 电感式传感器电感式传感器是利用电磁感应把被测的物理量如位移,压力,流量,振动等转换成线圈的自感系数和互感系数的变化,再由电路转换为电压或电流的变化量输出,实现非电量到电量的转换。电感式传感器具有以下特点: (1)结构简单,传感器无活动电触点,因此工作可靠寿命长。 (2)灵敏度和分辨力高,能测出0.01微米的位移变化。传感器的输出信号强,电压灵敏度一般每毫米的位移可达数百毫伏的输出。(3)线性度和重复性都比较好,在一定位移范围(几十微米至数毫米)内,传感器非线性误差可达0.05%0.1%。同时,这种传感器能实现信息的远距离传输、记录、显示和控制,它在工业自动控制系统中广泛被采用。但不足的是,它有频率响应较低,不宜快速动态测控等缺点。 电感式传感器种类很多,常见的有自感式,互感式和涡流式三种。图中介绍的是自感式传感器。由铁心和线圈构成的将直线或角位移的变化转换为线圈电感量变化的传感器,又称电感式位移传感器。这种传感器的线圈匝数和材料导磁系数都是一定的,其电感量的变化是由于位移输入量导致线圈磁路的几何尺寸变化而引起的。当把线圈接入测量电路并接通激励电源时,就可获得正比于位移输入量的电压或电流输出。电感式传感器的特点是:无活动触点、可靠度高、寿命长;分辨率高;灵敏度高;线性度高、重复性好;测量范围宽(测量范围大时分辨率低);无输入时有零位输出电压,引起测量误差;对激励电源的频率和幅值稳定性要求较高;不适用于高频动态测量。电感式传感器主要用于位移测量和可以转换成位移变化的机械量(如力、张力、压力、压差、加速度、振动、应变、流量、厚度、液位、比重、转矩等)的测量。常用电感式传感器有变间隙型、变面积型和螺管插铁型。在实际应用中,这三种传感器多制成差动式,以便提高线性度和减小电磁吸力所造成的附加误差。 变间隙型电感传感器 这种传感器的气隙随被测量的变化而改变,从而改变磁阻(图1)。它的灵敏度和非线性都随气隙的增大而减小,因此常常要考虑两者兼顾。一般取在0.10.5毫米之间。 变面积型电感传感器 这种传感器的铁芯和衔铁之间的相对覆盖面积(即磁通截面)随被测量的变化而改变,从而改变磁阻(图2)。它的灵敏度为常数,线性度也很好。 螺管插铁型电感传感器 它由螺管线圈和与被测物体相连的柱型衔铁构成。其工作原理基于线圈磁力线泄漏路径上磁阻的变化。衔铁随被测物体移动时改变了线圈的电感量。这种传感器的量程大,灵敏度低,结构简单,便于制作6。电感式传感器的应用实例有:测厚、零件计数、侧转速、无损探伤、测微技术等。2.4 压电式传感器压电式传感器的工作原理是基于某些介质材料的压电效应, 是典型的有源传感器。当材料受力作用而变形时, 其表面会有电荷产生,从而实现非电量测量。压电式传感器的等效电路:压电元件两电极间的压电陶瓷或石英晶体为绝缘体,因此可以构成一个电容器,晶体上聚集正负电荷的两表面相当于电容的两个极板, 极板间物质等效于一种介质, 则其电容量为:,压电元件受外力时,两表面产生等量的正负电 荷,压电元件的开路电压为:。压电传感器可以等效为一个电荷源与一个电容并联。如下图(a)压电传感器也可以等效为一个与电容相串联的电压源。如下图(b)电压灵敏度与电荷灵敏度之间的关系为:压电式传感器的测量电路: 测量时,需把压电传感器用电缆接于前置放大器,前置放大器作用: 一是放大传感器输出的微弱信号;二是把它的高输出阻抗变换为低输出阻抗。电压放大器如图(a): 电荷放大器如图(b): (b) 压电式传感器的性能特点:高阻抗、低能量;但是无静态输出,要求有很高的电输出阻抗。需用低电容的低噪声电缆。压电式传感器的应用有:压电式测力传感器、压电式加速度传感器、压电式金属加工切削力测量、压电式玻璃破碎报警器等。压电式金属加工切削力测量:压电式玻璃破碎报警器:2.5 霍尔式传感器霍尔传感器是利用霍尔元件基于霍尔效应原理而将被测量转换成电动势输出的一种传感器。由于霍尔元件在静止状态下,具有感受磁场的独特能力,并且具有结构简单、体积小、噪声小、频率范围宽(从直流到微波)、动态范围大(输出电势变化范围可达1000:1)、寿命长等特点,因此获得了广泛应用。 金属或半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流流过薄片时,在垂直于电流和磁场的方向上将产生电动势,这种现象称霍尔效应。如下图:霍尔元件的主要性能参数: (1)输入电阻和输出电阻 输入电阻:控制电极间的电阻 输出电阻:霍尔电极之间的电阻(2)额定控制电流和最大允许控制电流 额定控制电流:当霍尔元件有控制电流使其本身在空气中产生10温升时,对应的控制电流值 最大允许控制电流:以元件允许的最大温升限制所对 应的控制电流值(3)不等位电势:当霍尔元件的控制电流为额定值时,若元件所处位置的磁感应强度为零,测得的空载霍尔电势。(4)寄生直流电势 霍尔元件零位误差的一部分当没有外加磁场,霍尔元件用交流控制电流时,霍尔电极的输出有一个直流电势控制电极和霍尔电极与基片的连接是非完全欧姆接触时,会产生整流效应。两个霍尔电极焊点的不一致,引起两电极温度不同产生温差电势(5) 霍尔电势温度系数在一定磁感应强度和控制电流下,温度每变化1度时,霍尔电势变化的百分率。霍尔传感器的灵敏度和线性度主要取决于磁路系统和霍尔元件的特性。霍尔传感器动态性能好。霍尔传感器的基本测量电路如下:激励电流由电压源E供给,其大小由可变电阻来调节。霍尔型传感器的应用有:霍尔转速表、霍尔式微压力传感器、各种位移传感器等。第三章、传感器在机器人系统中的作用及地位为了检测作业对象及环境或机器人与它们的关系,在机器人上安装了触觉传感器、视觉传感器、力觉传感器、接近觉传感器、超声波传感器和听觉传感器,大大改善了机器人工作状况,使其能够更充分地完成复杂的工作。由于外部传感器为集多种学科于一身的产品,有些方面还在探索之中,随着外部传感器的进一步完善,机器人的功能越来越强大,将在许多领域为人类做出更大贡献。传感器对于机器人就好比人的四肢和外部的各种结构,如果没有传感器,机器人就像人没有任何感觉一样,不知道自己周围的情况,也就无法完成各种简单的动作,各种复杂的动作就更不可想象。传感器为机器人提供了检查自身周边环境的功能,如现代机器人包含了各种各样的传感器,能检查各种环境的变化,这样才能保证机器人能够完成复杂的任务在命令的控制下灵活运作。因此传感器在机器人系统中具有不可替代的作用,没有传感器的支持就无从谈起机器人,因此传感器是机器人必不可少的重要部件,离开传感器机器人寸步难行。第四章、机器人系统中传感器的选择及工作原理4.1机器人中传感器的分类根据检测对象的不同可分为内部传感器和外部传感器。a.内部传感器:用来检测机器人本身状态(如手臂间角度)的传感器。多为检测位置和角度的传感器。b.外部传感器:用来检测机器人所处环境(如是什么物体,离物体的距离有多远等)及状况(如抓取的物体是否滑落)的传感器。具体有物体识别传感器、物体探伤传感器、接近觉传感器、距离传感器、力觉传感器,听觉传感器等。具体有如下表:4.2内部传感器的选择机器人传感器主要包括机器人视觉、力觉、触觉、接近觉、距离觉、姿态觉、位置觉等传感器。机器人传感器可分为内部传感器和外部传感器两大类。内部传感器是以机器人本身的坐标轴来确定其位置,安装在机器人自身中,用来感知机器人自己的状态,以调整和控制机器人的行动。内部传感器通常由位置传感器、角度传感器、速度传感器、加速度传感器等组成。4.21位置传感器的工作原理位置传感器【position sensor】用来测量机器人自身位置的传感器。位置传感器可分为两种,直线位移传感器和角位移传感器。其中直线位移传感器常用的有直线位移定位器等,具有工作原理简单、测量精度高、可靠性强的特点;角位移传感器则可选旋转式电位器,具有可靠性高、成本低的优点。角位移器还可使用光电编码器,有增量式与绝对式两种形式。其中增量式码盘在机器人控制系统中得到了广泛的应用 码盘是测量角位移的数字编码器。它具有分辨能力强、测量精度高和工作可靠等优点,是测量轴转角位置的一种最常用的位移传感器。码盘分为绝对式编码器和增量编码器两种,前者能直接给出与角位置相对应的数字码;后者利用计算系统将旋转码盘产生的脉冲增量针对某个基准数进行加减以求得角位移。 接触编码器接触编码器是绝对式编码器中的一种,它由编码盘、电刷和电路组成。编码盘按二进制码制成,与旋转轴固定在一起。码盘上有6条码道,每条码道上有许多扇形导电区(黑区)和不导电区(白区),全部导电区连在一起接到一个公共电源上。 6个电刷沿一个固定的径向安装,分别与6条码道接触。每个电刷与一单根导线相连,输出6个电信号,其电平由码盘的位置控制。当电刷与导电区接触时,输出为“1”电平;与不导电区接触时,输出为“0”电平。随着转角的不同,输出相应的码。编码器的精度取决于码盘本身的精度,分辨率则取决于码道的数目。10条码道的码盘,其分辨率为1/1024,采用多个码盘和装上内部传动机构时可达1/105。 接触编码器的缺点是码盘与电刷之间存在接触摩擦,使用寿命短。电刷与码道的不正确接触还会产生模糊输出,可能给出错误的结果,造成误差。采用循环码(格雷码)可克服这一缺点,因为在任何瞬间只有一个比特的改变。格雷码(见字符编码)是变权码,它与十进制数的关系为 式中D为十进制数,n为具有“1”输出的最高位的位数,m为其次一位具有“1”输出的位数,q、s、依次类推。采用格雷码时,还需要按上式设计出相应的转换电路。型号标注及含义12-24NGMA3276864JZB79 序 号代表意义产品名称代码JZB接触式绝对编码器 主体直径(mm)79编码器的输出码数 32768(0-32767)连续圈数64输出信号 A4-20mA标准模拟量信号输出形态MRS485串行通讯信号(ModBus协议)设置用 输出方式G引线侧出增量方向N-逆时针增量(出厂设置,用户可修改) 工作电压12-24V 三、主要技术指标:输出码数轴每周输出/连续圈数 输出信号工作电压消耗电流响应频率防护等级32768码512码/64圈 RS485和4-20mADC12-24V30mA10KHZIP63最高机械转速使用寿命使用温度/贮存温度启动力矩轴最大负载外形尺寸输出方式1000rpmMTBF100000h(+25,1000rpm)-15+75-25+800.8Ncm径向轴向详见外形图引线侧出50N40N四、通讯协议MODBUS通讯协议: 采用 MODBUS - RTU(远程终端单元)模式进行通讯正天(SUNEST)系列编码器实现Modbus 通信协议时,均作为从机,遵循Modbus 通信过程,采用了MODBUS-RTU 协议的命令子集,使用读寄存器命令(03)和预置寄存器命令(06)。每消息的开头和结尾至少有3.5个字节时间的间隔。注:03 命令用于主机读取设备数据和设备响应主机的读数据命令;06 命令用于预置设备的参数(详细通讯协议请参考正天设备RS485口通信协议)。寄存器分配表:(寄存器地址高位字节可以任意)(十六进制=00-FF)寄存器分配预置功能说明出厂设置R-00测量值不可预置测量值=编码值修正系数/10000R-01保留不可预置R-02编码器地址可预置有效地址1-247R-03通讯波特率可预置00=2400/01=4800/02=9600/03=19200bps R-04奇偶校验位可预置00=停止位为2的无校验/01=停止位为1的奇校验/02=停止位为1的偶校验/03=停止位为1的无校验R-05编码器型号可预置52=逆时针方向增量;53=顺时针方向增量R-06修正系数可预置用于测量值误差的修正R-074mA可预置4mA对应值R-0820mA可预置20mA对应值R-09产品序列号不可预置 该序列号与标签上的产品编号一致五、接线关系:引线颜色白蓝黄绿红黑特性说明I+I-RS485ARS485B电源V+电源V-六、接线原理图:说明:1、编码器电源和4-20mA电源在内部是隔离的,用户使用更灵活(可以使用一组电源也可以使用两组)。2、 4-20mA标准模拟量输出时请勿进行RS485串行通讯,否则会影响反应速度。3、4-20mA标准模拟量输出计算公式: I= Y / (FF-F4) 16 + 4(mA)Y -编码值 FF -电流满量程(20mA)对应值 F4 - 4mA电流对应值外形图(单位:mm)安装使用及注意事项:1、旋转编码器属于高精度仪器,安装时严禁敲击和摔打碰撞,安装或使用不当会影响编码器的性能和使用寿命。2、编码器与外部联接应避免刚性连接,而应采用联轴器、连接齿轮或同步带联接传动,避免因用户轴的串动、跳动造成编码器轴系和码盘的损坏。3、安装时注意其允许的轴负载,不得超过极限负载。4、注意不要超过编码器的极限转速,如超过极限转速时,电信号可能会丢失。5、接线务必正确,错误接线可能会导致编码器内部电路损坏。6、请不要将编码器的信号输出线与动力等线绕在一起或同一管道传输,也不宜在配电盘附近使用,以防干扰。增量编码器概述工作原理: 增量编码器是一种将旋转位移转换为一连串数字脉冲信号的旋转式传感器。这些脉冲用来控制角位移。在Eltra编码器中角位移的转换采用了光电扫描原理。读数系统以由交替的透光窗口和不透光窗口构成的径向分度盘(码盘)的旋转为依据,同时被一个红外光源垂直照射,光把码盘的图像投射到接收器表面上。接收器覆盖着一层衍射光栅,它具有和码盘相同的窗口宽度。接收器的工作是感受光盘转动所产生的变化,然后将光变化转换成相应的电变化。再使低电平信号上升到较高电平,并产生没有任何干扰的方形脉冲,这就必须用电子电路来处理。读数系统通常采用差分方式,即将两个波形一样但相位差为180的不同信号进行比较,以便提高输出信号的质量和稳定性。读数是再两个信号的差别基础上形成的,从而消除了干扰。顺时针运动逆时针运动A B1 10 10 01 0A B1 11 00 00 1增量编码器增量编码器给出两相方波,它们的相位差90,通常称为A通道和B通道。其中一个通道给出与转速相关的信息,与此同时,通过两个通道信号进行顺序对比,得到旋转方向的信息。还有一个特殊信号称为Z或零通道,该通道给出编码器的绝对零位,此信号是一个方波与A通道方波的中心线重合。增量型编码器精度取决于机械和电气两种因素,这些因素有:光栅分度误差、光盘偏心、轴承偏心、电子读数装置引入的误差以及光学部分的不精确性。确定编码器精度的测量单位是电气上的度数,编码器精度决定了编码器产生的脉冲分度。以下用360电气度数来表示机械轴的转动,而轴的转动必须是一个完整的周期。要知道多少机械角度相当于电气上的360度,可以用下列公式来计算: 电气360 =机械360/n脉冲/转图:A、B换向时信号编码器分度误差是以电气角度为单位的两个连续脉冲波的最大偏移来表示。误差存在于任何编码器中,这是由前述各因素引起的。Eltra编码器的最大误差为25电气角度(在已声明的任何条件下),相当于额定值偏移7%,至于相位差90(电气上)的两个通道的最大偏差为35电气度数相当于额定值偏移10%左右。UVW信号增量型编码器除了上述传统的编码器外,还有一些是与其它的电气输出信号集成在一起的增量型编码器。与UVW信号集成的增量型编码器就是实例,它通常应用于交流伺服电机的反馈。这些磁极信号一般出现在交流伺服电机中,UVW信号一般是通过模拟磁性原件的功能而设计的。在Eltra编码器中,这些UVW信号是用光学方法产生,并以三个方波的形式出现,它们彼此偏移120。为了便于电机启动,控制电动机用的启动器需要这些正确的信号。这些UVW磁极脉冲可在机械轴旋转中重复许多次,因为它们直接取决于所连接的电机磁极数,并且用于4、6或更多极电机的UVW信号。增量编码器与单片机的接口:用51单片机实现的具体方法:将A信号连接至外部中断INT0,再将其反向后连接至外部中断INT1,将B信号作为方向信号连接至某一输入端口(P3.0),这样在信号A的上升沿和与下降沿都会产生中断。由于在不同转向时,信号A的下降沿所对应的方向信号电平正好相反,单片机在中断服务程序中先检测B信号的状态,根据不同的状态进行不同的处理(计数值增加还是减小),这样能够有效的防止反转产生的误差,从而实现精确计数,相应的C程序段如下:sbit DIR = P3.0;int cnt; /计数器数值变量void Int0ISR(void) interrupt 0 using 1if( DIR ) cnt+; else cnt-;void Int1ISR(void) interrupt 2 using 2if( DIR ) cnt-; else cnt+;上述方法虽然能够实现精确计数,但需要占用两个外部中断源,在一些应用中受到限制。目前的新型单片机都具有增强的功能,如输入捕捉,输入比较等;利用输入捕捉功能能够更容易的实现编码器的接口。一个可编程计数器阵列模块PCA,有一个专用的计数器和5个工作通道所组成。5个通道可以工作于4种方式之一:软件定时器方式,输入捕捉方式,输出比较方式和PWM方式。输入捕捉方式可以在脉冲的上升沿或者下降沿捕捉,并同时产生中断请求。利用这个功能可以很容易的实现编码器的信号检测与处理。为了消除反转误差,同时也增加了分辨率,将PCA设置成上升沿和下降沿捕捉方式。在PCA中断服务程序中,首先检测信号A的状态,以判别其是上升沿中断还是下降沿中断。无论是上升沿还是下降沿,信号B都有两种可能(正传和反转)。因此像前面一样,还需要再根据不同的情况进行相反的处理。具体的C程序如下:采用PCA通道4sbit DIR = P3.0;sbit PLS = P1.6; /PCA输入通道4int cnt; /计数器数值变量void PcaISR(void) interrupt 6 using 2 if( PLS )if( DIR ) cnt-; else cnt+; Elseif( DIR ) cnt+; else cnt-;增量型编码器存在零点累计误差,抗干扰较差,接收设备的停机需断电记忆,开机应找零或参考位等问题,这些问题如选用绝对型编码器可以解决。一、问:增量旋转编码器选型有哪些注意事项?应注意三方面的参数:1 机械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积;工作环境防护等级是否满足要求。2 分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。3电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E),集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。 二、增量编码器的使用方法1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用TTL电平,A脉冲在前,B脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。一般利用A超前B或B超前A进行判向,我公司增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90,反之逆时针旋转为反转B超前A为90。3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。5,在电子装置中设立计数栈。三、从增量式编码器到绝对式编码器 旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。4.22角度传感器工作原理角度传感器是指能感受被测角度并转换成可用输出信号的传感器。 角度传感器,顾名思义,是用来检测角度的。它的身体中有一个孔,可以配合乐高的轴。当连结到RCX上时,轴每转过1/16圈,角度传感器就会计数一次。往一个方向转动时,计数增加,转动方向改变时,计数减少。计数与角度传感器的初始位置有关。当初始化角度传感器时,它的计数值被设置为0,如果需要,你可以用编程把它重新复位。 通过计算旋转的角度可以很容易的测出位置和速度。当在机器人身上连接上轮子(或通过齿轮传动来移动机器人)时,可以依据旋转的角度和轮子圆周数来推断机器人移动的距离。然后就可以把距离转换成速度,你也可以用它除以所用时间。实际上,计算距离的基本方程式为: 距离=速度时间 由此可以得到:速度=距离/时间 磁敏角度传感器定义及其原理磁敏电阻角度传感器磁敏感角度传感器采用高性能集成磁敏感元件,利用磁信号感应非接触的特点,配合微处理器进行智能化信号处理制成的新一代角度传感器。特点:无触点 高灵敏度 接近无限转动寿命 无噪声 高重复性高频响应特性好 优点:1)磁钢位置未对准自动补偿; 2)故障检测功能;3)非接触位置检测功能,是满足苛刻环境应用需求的理想选择。主要应用领域: 1)工业机械、工程机械建筑设备、石化设备、医疗设备、航空航天仪器仪表、国防工业等旋转速度和角度的测量. 2)汽车电子脚踩油门角位移,方向盘位置,座椅位置,前大灯位置; 3)自动化机器人,运动控制,旋转电机转动和控制.举例: 1、DWQBZ40G: 工业级标准化 电流输出 040(20)角度传感器 2、DWQBL2V30: 比例输出正负2V 电压输出 30角度传感器产品选型技术测试指标一、电压比例输出:电气参数 除特别说明外,VCC=5V,TA25表2产品型号DWQBL参数名称测试条件参数值单位最小典型最大电源电压Vcc4.555.5V消耗电流Is10mA存储温度Ts-40125C使用温度TA-2080C中点输出VO2.492.502.51V满度输出FSRL2K0.54.5V输出高电压VOHIO = -1mA4.85V输出低电压VOLIO = 1mA0.15V中点温漂-20CTA80C10mVFS满度温漂-20CTA80C0.02%/CFS分辨率0.015o线性度=82FS=203FS=306FS=451.5%FS=603%FS接线方式红 电源正极 黑 电源负极 黄 输出信号基于磁敏角度技术的拉线式位移传感器的设计与应用传统的拉线式位移传感器采用电位器式位移传感器,它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。电位器式位移传感器的可动电刷与被测物体相连,物体的位移引起电位器移动端的电阻变化。阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。通常在电位器上通以电源电压,把电阻变化转换为电压输出。传统的拉线式位移传感器由于其电刷移动时电阻以匝电阻为阶梯变化,其输出特性亦呈阶梯形。如果这种位移传感器在伺服系统中用作位移反馈元件的时,则过大的阶跃电压会引起系统振荡。因此在电位器的制作中应尽量减小每匝的电阻值。同时,电位器式传感器的另一个主要缺点是易磨损、分辨力差、阻值偏低、高频特性差,从而导致测量精度的下降。它的优点是:结构简单,输出信号大,使用方便,价格低廉。基于磁敏角度技术的拉线式位移传感器以磁场为传输载体,将位移变换转换为磁场角度位移,同时,通过通信接口将位移信号返回给应用系统。1、总体设计方案基于磁敏角度技术的拉线式位移传感器的功能是将拉线的机械位移换成可以计量、记录或传送的电信号,主要由自动回复弹簧、轮毂、磁铁以及数据处理单元等部分构成,结构如图2所示由图2可以看出,该基于磁敏角度技术的拉线式位移传感器主要由6部分组成,改变传统的拉线式位移传感器接触式、易磨损、高频特性差等缺点,基于磁敏角度技术的拉线式位移传感器以磁场为媒介,将机械位移变化转化为磁场角度变化,一方面解决传统拉线位移传感器的接触方式,另一方面减少了磨损、提高了系统高频特性,从而确保位移检测精度。数据处理运算器,用于对接收到的磁敏角度信号通过数学模型运算为拉线的位移信号。通信接口,通过通信接口与应用系统的设备进行通信,接收来自应用系统设备的命令并将采集到的位移信号反馈给应用系统。从而提高了数据采集精度、稳定性和可靠性,降低了位移传感器的应用门槛。各个部件功能描述如下:(1)拉线的钢绳缠绕在轮毂上,轮毂与一个磁铁连接在一起,当拉线产生位移的时候,带动轮毂的转动,轮毂的转动造成与轮毂的轴连接的磁铁转动,从而磁铁的磁场产生一个变化的角度。拉线运动发生的时候,自动回复弹簧确保拉线具备一定的张力,确保拉线的位移与磁敏角度的比例关系。(2)磁敏角度感应器与磁铁安装在同一中心轴,用来感应磁铁角度的变化,选用一种微处理器,该处理器读取磁敏角度信息,并通过建立数学模型,将磁敏角度运算为拉线的位移。(3)通讯接口,微处理器通过通信接口接收来自应用系统的命令并将位移信息通过通信接口返回给应用系统。数据处理单元由磁敏角度感应器、微处理器单元、通信接口以及输出模块,具体的功能框如图3所示。2 硬件接口电路设计图3处理单元通过分析图3,磁敏角度感应器选用MLX90316,它将拉线位移所导致的磁铁磁场转动的角度转换为磁敏角度。微处理器单元选用32位嵌入式ARM用于对接收到的磁敏角度数据进行处理,完成磁敏角度数据的接收,由于接收到的是磁场转换的角度,所以通过建立数学模型,结合轮毂的直径等因素,将磁敏角度换算为拉线的位移。因此,为了能够快速地实现数据的接收和模型的建立,此处选用LPC2136作为数据处理单元。输入、输出控制模块负责各种对外接口的处理,如通过通信接口接收来自应用系统的命令,向应用系统返回采集的位移结果,以便能够将微处理器单元能够执行应用系统的命令并将采集结果通过接口安全可靠地发送到应用设备,主要包含1路的RS 485和420 mA的电流输出。(1) 磁敏角度接收接口MLX90316是一种线性霍尔芯片,采用了平面霍尔传感技术的单片集成传感芯片,该芯片可以用来测量与芯片表面共面的磁通密度,可以得到从0360的旋转位置值,通过多种模式输出准确度很高的线性绝对位置信号,并且成本低廉、安装简便。MLX90316芯片前端是采用Triaxis霍尔技术的传感器。由霍尔传感器得到的二路正交的模拟信号经过放大处理后,经过14位微分型AD转换器进入芯片微处理器(DSP),再经过16位DSP处理之后的数字信号分3路输出。MLX90316输出具有12位角度分辨率,10位角度精度,并且在一定程度上可以避免外围温度变化对输出精度的影响。MLX90316具有3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论