




免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第79讲 圆锥曲线中的定点和定值问题的解法【知识要点】一、 定点问题:对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,证明直线过定点,一般有两种方法.(1)特殊探求,一般证明:即可以先考虑动直线或曲线的特殊情况,找出定点的位置,然后证明该定点在该直线或该曲线上(定点的坐标直线或曲线的方程后等式恒成立).(2)分离参数法:一般可以根据需要选定参数,结合已知条件求出直线或曲线的方程,分离参数得到等式,(一般地,为关于的二元一次关系式)由上述原理可得方程组,从而求得该定点.二、定值问题:在几何问题中,有些几何量与参数无关,这就构成了定值问题,定值问题的处理常见的方法有:(1)特殊探究,一般证明.(2)直接求题目给定的对象的值,证明其结果是一个常数.【方法讲评】题型一定点问题方法一特殊探求,一般证明:即可以先考虑动直线或曲线的特殊情况,找出定点的位置,然后证明该定点在该直线或该曲线上(定点的坐标直线或曲线的方程后等式恒成立).方法二分离参数法:若等式对恒成立,则同时成立,运用这一原理,可以证明直线或曲线过定点问题.一般可以根据需要选定参数,结合已知条件求出直线或曲线的方程,分离参数得到等式,(一般地,为关于的二元一次关系式)由上述原理可得方程组,从而求得该定点.【例1】 设点和是抛物线上原点以外的两个动点,且,求证直线过定点. 【解析一】取写出直线的方程;再取写出直线的方程;最后求出两条直线的交点,得交点为.设,直线的方程为, 由题意得两式相减得 ,即,直线的方程为,整理得 【点评】(1)证明直线过定点,一般有两种方法.方法一:特殊探求,一般证明:即可以先考虑动直线或曲线的特殊情况,找出定点的位置,然后证明该定点在该直线或该曲线上(定点的坐标直线或曲线的方程后等式恒成立).方法二:分离参数法:若等式对恒成立,则同时成立,运用这一原理,可以证明直线或曲线过定点问题.一般可以根据需要选定参数,结合已知条件求出直线或曲线的方程,分离参数得到等式,(一般地,为关于的二元一次关系式)由上述原理可得方程组,从而求得该定点.(2)解析一使用的就是方法一,解析二使用的就是方法二. 大家注意灵活选择. 【反馈检测1】已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为()求椭圆的标准方程;()若直线与椭圆相交于,两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标 【反馈检测2】在直角坐标系中,椭圆 的离心率,且过点,椭圆的长轴的两端点为,点为椭圆上异于的动点,定直线与直线、分别交于两点. (1)求椭圆的方程;(2)在轴上是否存在定点经过以为直径的圆,若存在,求定点坐标;若不存在,说明理由. 题型二定值问题方法一特殊探究,一般证明.方法二直接求题目给定的对象的值,证明其结果是一个常数. 【例2】过抛物线:(0)的焦点作直线交抛物线于两点,若线段与的长分别为,则的值必等于( )a b c d 又由,消去得, 【点评】定值问题的处理常见的方法有:(1)特殊探究,一般证明.(2)直接求题目给定的对象的值,证明其结果是一个常数.【反馈检测3】椭圆的离心率为,且过点(1)求椭圆的方程;(2)若分别是椭圆的左、右顶点,动点满足,且交椭圆于不同于的点,求证:为定值 【反馈检测4】如图,为椭圆的左右焦点,是椭圆的两个顶点,若点在椭圆上,则点称为点的一个“椭点”.直线与椭圆交于两点,两点的“椭点”分别为,已知以为直径的圆经过坐标原点. (1)求椭圆的标准方程;(2)试探讨的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由. 高中数学常见题型解法归纳及反馈检测第79讲:圆锥曲线中的定点和定值问题的解法参考答案 【反馈检测1答案】(1);(2)直线过定点,定点坐标为 ()设,联立得,又,因为以为直径的圆过椭圆的右焦点,即, 【反馈检测2答案】(1);(2)存在,.【反馈检测2详细解析】(1),椭圆的方程为.(2)设、的斜率分别为.即,由知,由知,的中点.以为直径的圆的方程为,令,即,解得或,存在定点经过以为直径的圆.【反馈检测3答案】(1)(2) 【反馈检测4答案】(1);(2)的面积为定值1.【反馈检测4详细解析】(1)由题可得解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年合肥肥西县桃花初级中学教师招聘考试试题(含答案)
- 法院考试面试题及答案
- 湘西中考试题及答案
- 2025年灌南县教育系统招聘教师考试笔试试题(含答案)
- 校保卫处消防知识培训课件
- 急救技能知识模拟试题库及答案
- 饭店服务与管理试题库含答案
- 医院突发事件应急处理培训考核试题及答案
- 急救药品考试题(含答案)
- 放射医学技术(士、师)考试题库含答案
- 流水走账协议合同
- 博士组合物80问
- 陪玩协议书6篇
- TAGFA 0012-2024 绿色食品 茶叶种植技术规范
- 模块化建筑运输与安装行业跨境出海战略研究报告
- 2025年光伏发电安装合同模板
- 家长外出务工委托亲戚照顾孩子全托合同协议书
- 华为SDBE领先模型:闭环战略管理的全面解析-2024-12-组织管理
- GB/T 11263-2024热轧H型钢和剖分T型钢
- 老年病的特点及诊疗要点
- 电解次氯酸钠消毒设备技术方案
评论
0/150
提交评论