




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆锥曲线专题练习(一)一、求轨迹方程1、(1)已知双曲线与椭圆:有公共的焦点,并且双曲线的离心率与椭圆的离心率之比为,求双曲线的方程(2)以抛物线上的点与定点为端点的线段MA的中点为P,求P点的轨迹方程(1)解:的焦点坐标为由得设双曲线的方程为则 解得 双曲线的方程为(2)解:设点,则,代入得:此即为点P的轨迹方程2、(1)的底边,和两边上中线长之和为,建立适当的坐标系求此三角形重心的轨迹和顶点的轨迹(2)中,且,求点的轨迹方程解: (1)以所在的直线为轴,中点为原点建立直角坐标系设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点因,有,故其方程为设,则 由题意有代入,得的轨迹方程为,其轨迹是椭圆(除去轴上两点)(2)分析:由于sinA、sinB、sinC的关系为一次齐次式,两边乘以2R(R为外接圆半径),可转化为边长的关系解:sinC-sinB=sinA 2RsinC-2RsinB=2RsinA即 (*)点A的轨迹为双曲线的右支(去掉顶点)2a=6,2c=10a=3, c=5, b=4所求轨迹方程为 (x3)点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支)3、如图,两束光线从点分别射向直线上两点和后,反射光线恰好通过椭圆:的两焦点,已知椭圆的离心率为,且,求椭圆的方程解:设a=2k,c=k,k0,则b=k,其椭圆的方程为. 由题设条件得:, , x2-x1=, 由、解得:k=1,x1=,x2=-1,所求椭圆C的方程为.4、在面积为的中,建立适当的坐标系,求出以、为焦点且过点的椭圆方程所求椭圆方程为解:以的中点为原点,所在直线为轴建立直角坐标系,设则即得5、已知点是圆上一个动点,定点的坐标为(1)求线段的中点的轨迹方程;(2)设的平分线交于点(为原点),求点的轨迹方程解:(1)设线段PQ的中点坐标为M(x,y),由Q(4,0)可得点P(2x-4,2y),代入圆的方程x2+y2=4可得(2x-4)2+(2y)2=4,整理可得所求轨迹为(x-2)2+y2=1. (2)设点R(x,y),P(m,n),由已知|OP|=2,|OQ|=4,由角平分线性质可得=,又点R在线段PQ上,|PR|=|RQ|,点R分有向线段PQ的比为,由定比分点坐标公式可得,即,点P的坐标为,代入圆的方程x2+y2=4可得, 即+y2=(y0). 点R的轨迹方程为+y2=(y0).6、已知动圆过定点,且与直线相切(1)求动圆的圆心轨迹的方程;(2)是否存在直线,使过点,并与轨迹交于两点,且满足?若存在,求出直线的方程;若不存在,说明理由解:(1)如图,设为动圆圆心, ,过点作直线的垂线,垂足为,由题意知:, 即动点到定点与定直线的距离相等,由抛物线的定义知,点的轨迹为抛物线,其中为焦点,为准线, 动点的轨迹方程为 (2)由题可设直线的方程为,由得 , 设,则, 由,即 ,于是,即, ,解得或(舍去),又, 直线存在,其方程为 7、设双曲线的两个焦点分别为,离心率为(I)求此双曲线的渐近线的方程;(II)若分别为上的点,且,求线段的中点的轨迹方程,并说明轨迹是什么曲线;(III)过点能否作出直线,使与双曲线交于两点,且若存在,求出直线的方程;若不存在,说明理由解:(I) ,渐近线方程为4分 (II)设,AB的中点 则M的轨迹是中心在原点,焦点在x轴上,长轴长为,短轴长为的椭圆.(9分) (III)假设存在满足条件的直线 设 由(i)(ii)得 k不存在,即不存在满足条件的直线.8、设是椭圆上的一点,分别为关于轴、原点、轴的对称点,为椭圆上异于的另一点,且,与的交点为,当沿椭圆运动时,求动点的轨迹方程解:设点的坐标则1分 3分 由(1)(2)可得6分又MNMQ,所以直线QN的方程为,又直线PT的方程为从而得所以代入(1)可得此即为所求的轨迹方程.9、已知:直线过原点,抛物线的顶点在原点,焦点在轴正半轴上若点和点关于的对称点都在上,求直线和抛物线的方程分析:曲线的形状已知,可以用待定系数法设出它们的方程,L:y=kx(k0),C:y2=2px(p0).设A、B关于L的对称点分别为A/、B/,则利用对称性可求得它们的坐标分别为:A/(),B/()。因为A/、B/均在抛物线上,代入,消去p,得:k2-k-1=0.解得:k=,p=.所以直线L的方程为:y=x,抛物线C的方程为y2=x.10、已知椭圆的左、右焦点分别是、,是椭圆外的动点,满足点是线段与该椭圆的交点,点在线段上,并且满足,()设为点的横坐标,证明;()求点的轨迹的方程;()试问:在点的轨迹上,是否存在点,使的面积若存在,求的正切值;若不存在,请说明理由()证法一:设点P的坐标为由P在椭圆上,得由,所以 3分证法二:设点P的坐标为记则由证法三:设点P的坐标为椭圆的左准线方程为由椭圆第二定义得,即由,所以3分()解法一:设点T的坐标为 当时,点(,0)和点(,0)在轨迹上.当|时,由,得.又,所以T为线段F2Q的中点.在QF1F2中,所以有综上所述,点T的轨迹C的方程是7分解法二:设点T的坐标为 当时,点(,0)和点(,0)在轨迹上.当|时,由,得.又,所以T为线段F2Q的中点. 设点Q的坐标为(),则因此 由得 将代入,可得综上所述,点T的轨迹C的方程是7分 ()解法一:C上存在点M()使S=的充要条件是 由得,由得 所以,当时,存在点M,使S=;当时,不存在满足条件的点M.11分当时,由,得解法二:C上存在点M()使S=的充要条件是 由得 上式代入得于是,当时,存在点M,使S=;当时,不存在满足条件的点M.11分当时,记,由知,所以14分11、设抛物线的焦点为,动点在直线上运动,过作抛物线的两条切线、,且与抛物线C分别相切于、两点(1)求的重心的轨迹方程;(2)证明解:(1)设切点A、B坐标分别为,切线AP的方程为: 切线BP的方程为:解得P点的坐标为:所以APB的重心G的坐标为 ,所以,由点P在直线l上运动,从而得到重心G的轨迹方程为: (2)方法1:因为由于P点在抛物线外,则同理有AFP=P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中共江西省委党校(江西行政学院)高层次人才招聘27人模拟试卷及一套完整答案详解
- 社会福利社会化中的资源配置效率研究-洞察及研究
- 一年级语文水平测试发卷与评分标准
- 公务员面试常见问答技巧解析
- 噪声环境下语音识别技术-洞察及研究
- 商用中央空调系统设计基础知识
- 加油站库存盘点及异常报告制作指南
- 安全标准化培训简讯课件
- 河车大造丸对儿童和青少年的禁忌探讨-洞察及研究
- 动态环境下的无线充电-洞察及研究
- 部队春季流行病预防知识
- 安装工程技术标
- 2023-2024学年天津八中七年级(上)第一次月考语文试卷
- 运动医学分级诊疗管理制度
- 2024七年级数学上册第3章代数式综合与实践-密码中的数学习题课件新版苏科版
- 挂靠经营合同(2篇)
- 皮带输送机安装安全技术措施方案
- 15ω-3脂肪酸在妊娠期管理的应用
- 辽宁省沈阳市杏坛中学2024-2025学年度上学期九年级10月份月考数学试卷
- 北京市西城区北京市第四中学2024-2025学年七年级上学期分班考数学试卷
- 【语文】第二单元《阅读综合实践》课件-2024-2025学年七年级语文上册(统编版2024)
评论
0/150
提交评论