高考数学大一轮复习 第十一章 概率 11.1 随机事件的概率学案 文 北师大版.doc_第1页
高考数学大一轮复习 第十一章 概率 11.1 随机事件的概率学案 文 北师大版.doc_第2页
高考数学大一轮复习 第十一章 概率 11.1 随机事件的概率学案 文 北师大版.doc_第3页
高考数学大一轮复习 第十一章 概率 11.1 随机事件的概率学案 文 北师大版.doc_第4页
高考数学大一轮复习 第十一章 概率 11.1 随机事件的概率学案 文 北师大版.doc_第5页
免费预览已结束,剩余12页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

11.1随机事件的概率最新考纲考情考向分析1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.以考查随机事件、互斥事件与对立事件的概率为主,常与事件的频率交汇考查本节内容在高考中三种题型都有可能出现,随机事件的频率与概率的题目往往以解答题的形式出现,互斥事件、对立事件的概念及概率常常以选择、填空题的形式出现.1随机事件和确定事件(1)在条件s下,一定会发生的事件,叫作相对于条件s的必然事件(2)在条件s下,一定不会发生的事件,叫作相对于条件s的不可能事件(3)必然事件与不可能事件统称为相对于条件s的确定事件(4)在条件s下可能发生也可能不发生的事件,叫作相对于条件s的随机事件(5)确定事件和随机事件统称为事件,一般用大写字母a,b,c表示2频率与概率在相同的条件下,大量重复进行同一试验时,随机事件a发生的频率会在某个常数附近摆动,即随机事件a发生的频率具有稳定性这时,我们把这个常数叫作随机事件a的概率,记作p(a)3事件的关系与运算互斥事件:在一个随机试验中,我们把一次试验下不能同时发生的两个事件a与b称作互斥事件事件ab:事件ab发生是指事件a和事件b至少有一个发生对立事件:不会同时发生,并且一定有一个发生的事件是相互对立事件4概率的几个基本性质(1)概率的取值范围:0p(a)1.(2)必然事件的概率p(e)1.(3)不可能事件的概率p(f)0.(4)互斥事件概率的加法公式如果事件a与事件b互斥,则p(ab)p(a)p(b)若事件a与事件互为对立事件,则p(a)1p()知识拓展互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)事件发生的频率与概率是相同的()(2)随机事件和随机试验是一回事()(3)在大量重复试验中,概率是频率的稳定值()(4)两个事件的和事件是指两个事件都得发生()(5)对立事件一定是互斥事件,互斥事件不一定是对立事件()(6)两互斥事件的概率和为1.()题组二教材改编2一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是()a至多有一次中靶 b两次都中靶c只有一次中靶 d两次都不中靶答案d解析“至少有一次中靶”的对立事件是“两次都不中靶”3有一个容量为66的样本,数据的分组及各组的频数如下:11.5,15.5),2;15.5,19.5),4;19.5,23.5),9;23.5,27.5),18;27.5,31.5),11;31.5,35.5),12;35.5,39.5),7;39.5,43.5,3.根据样本的频率分布估计,数据落在27.5,43.5内的概率约是_答案解析由条件可知,落在27.5,43.5内的数据有11127333(个),故所求概率约是.题组三易错自纠4将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是()a必然事件 b随机事件c不可能事件 d无法确定答案b解析抛掷10次硬币正面向上的次数可能为010,都有可能发生,正面向上5次是随机事件5从1,2,3,4,5中随机选取一个数a,从1,2,3中随机选取一个数b,则ba的概率是()a. b. c. d.答案d解析基本事件的个数为5315,其中满足ba的有3种,所以ba的概率为.6(2018济南模拟)从一箱产品中随机地抽取一件,设事件a抽到一等品,事件b抽到二等品,事件c抽到三等品,且已知p(a)0.65,p(b)0.2,p(c)0.1,则事件“抽到的产品不是一等品”的概率为_答案0.35解析事件a抽到一等品,且p(a)0.65,事件“抽到的产品不是一等品”的概率为p1p(a)10.650.35.题型一事件关系的判断1从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:至少有1个白球与至少有1个黄球;至少有1个黄球与都是黄球;恰有1个白球与恰有1个黄球;恰有1个白球与都是黄球其中互斥而不对立的事件共有()a0组 b1组 c2组 d3组答案b解析中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰好1个白球和1个黄球,故两个事件不是互斥事件;中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,故两个事件不互斥;中“恰有1个白球”与“恰有1个黄球”都是指有1个白球和1个黄球,故两个事件是同一事件;中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件,故选b.2在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是()a至多有一张移动卡 b恰有一张移动卡c都不是移动卡 d至少有一张移动卡答案a解析至多有一张移动卡包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件3口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出两个球,事件a“取出的两个球同色”,b“取出的两个球中至少有一个黄球”,c“取出的两个球中至少有一个白球”,d“取出的两个球不同色”,e“取出的两个球中至多有一个白球”下列判断中正确的序号为_a与d为对立事件;b与c是互斥事件;c与e是对立事件;p(ce)1;p(b)p(c)答案解析当取出的两个球中一黄一白时,b与c都发生,不正确;当取出的两个球中恰有一个白球时,事件c与e都发生,不正确;显然a与d是对立事件,正确;ce不一定为必然事件,p(ce)1,不正确;p(b),p(c),不正确思维升华 (1)准确把握互斥事件与对立事件的概念互斥事件是不可能同时发生的事件,但可以同时不发生对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生(2)判断互斥、对立事件的方法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件题型二随机事件的频率与概率典例 (2017全国)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,30)30,35)35,40天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出y的所有可能值,并估计y大于零的概率解(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则y64504450900;若最高气温位于区间20,25),则y63002(450300)4450300;若最高气温低于20,则y62002(450200)4450100,所以,y的所有可能值为900,300,100.y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为0.8.因此y大于零的概率的估计值为0.8.思维升华 (1)概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值(2)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率跟踪训练 (2016全国)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数012345保费0.85aa1.25a1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数012345频数605030302010(1)记a为事件:“一续保人本年度的保费不高于基本保费”,求p(a)的估计值;(2)记b为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求p(b)的估计值;(3)求续保人本年度的平均保费的估计值解(1)事件a发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为0.55,故p(a)的估计值为0.55.(2)事件b发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为0.3,故p(b)的估计值为0.3.(3)由所给数据,得保费0.85aa1.25a1.5a1.75a2a频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a0.30a0.251.25a0.151.5a0.151.75a0.102a0.051.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.题型三互斥事件、对立事件的概率命题点1互斥事件的概率典例 经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率解记“无人排队等候”为事件a,“1人排队等候”为事件b,“2人排队等候”为事件c,“3人排队等候”为事件d,“4人排队等候”为事件e,“5人及5人以上排队等候”为事件f,则事件a、b、c、d、e、f彼此互斥(1)记“至多2人排队等候”为事件g,则gabc,所以p(g)p(abc)p(a)p(b)p(c)0.10.160.30.56.(2)记“至少3人排队等候”为事件h,则hdef,所以p(h)p(def)p(d)p(e)p(f)0.30.10.040.44.命题点2对立事件的概率典例 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率解方法一(利用互斥事件求概率)记事件a1任取1球为红球,a2任取1球为黑球,a3任取1球为白球,a4任取1球为绿球,则p(a1),p(a2),p(a3),p(a4).根据题意知,事件a1,a2,a3,a4彼此互斥,由互斥事件的概率公式,得(1)取出1球是红球或黑球的概率为p(a1a2)p(a1)p(a2).(2)取出1球是红球或黑球或白球的概率为p(a1a2a3)p(a1)p(a2)p(a3).方法二(利用对立事件求概率)(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即a1a2的对立事件为a3a4,所以取出1球为红球或黑球的概率为p(a1a2)1p(a3a4)1p(a3)p(a4)1.(2)因为a1a2a3的对立事件为a4,所以p(a1a2a3)1p(a4)1.思维升华 求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法(1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”它常用来求“至少”或“至多”型事件的概率跟踪训练 某学校在教师外出家访了解学生家长对孩子的学习关心情况活动中,一个月内派出的教师人数及其概率如下表所示:派出人数23456概率0.10.460.30.10.04(1)求有4人或5人外出家访的概率;(2)求至少有3人外出家访的概率解(1)设派出2人及以下为事件a,3人为事件b,4人为事件c,5人为事件d,6人及以上为事件e,则有4人或5人外出家访的事件为事件c或事件d,c,d为互斥事件,根据互斥事件概率的加法公式可知,p(cd)p(c)p(d)0.30.10.4.(2)至少有3人外出家访的对立事件为2人及以下,所以由对立事件的概率可知,p1p(a)10.10.9.用正难则反思想求对立事件的概率典例 (12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x3025y10结算时间(分钟/人)11.522.53已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率)思想方法指导 若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解规范解答解(1)由已知得25y1055,x3045,所以x15,y20.2分该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1.9(分钟)6分(2)记a为事件“一位顾客一次购物的结算时间不超过2分钟”,a1,a2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率,得p(a1),p(a2).9分p(a)1p(a1)p(a2)1.11分故一位顾客一次购物的结算时间不超过2分钟的概率为.12分1有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向事件“甲向南”与事件“乙向南”的关系为是()a两事件是互斥但非对立事件b两事件是对立事件c两事件的和事件是不可能事件d两事件的积事件是必然事件答案a解析由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件2某袋中有编号为1,2,3,4,5,6的6个球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是()a. b.c. d.答案c解析设a,b分别为甲、乙摸出球的编号由题意,摸球试验共有36种不同的结果,满足ab的基本事件共有6种所以摸出编号不同的概率p1.3(2016天津)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()a. b.c. d.答案a解析事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为.4(2017湖南衡阳八中、长郡中学等十三校二模)同学聚会上,某同学从爱你一万年、十年、父亲、单身情歌四首歌中选出两首歌进行表演,则爱你一万年未被选取的概率为()a. b.c. d.答案b解析分别记爱你一万年、十年、父亲、单身情歌为a1,a2,a3,a4,从这四首歌中选出两首歌进行表演的所有可能的结果为a1a2,a1a3,a1a4,a2a3,a2a4,a3a4,共6个,其中a1未被选取的结果有3个,所以所求概率p.故选b.5袋中装有3个白球,4个黑球,从中任取3个球,则恰有1个白球和全是白球;至少有1个白球和全是黑球;至少有1个白球和至少有2个白球;至少有1个白球和至少有1个黑球在上述事件中,是对立事件的为()a bc d答案b解析至少有1个白球和全是黑球不同时发生,且一定有一个发生中两事件是对立事件6掷一个骰子的试验,事件a表示“出现小于5的偶数点”,事件b表示“出现小于5的点”,若表示b的对立事件,则一次试验中,事件a发生的概率为()a. b.c. d.答案c解析掷一个骰子的试验有6种可能的结果依题意知p(a),p(b),p()1p(b)1,表示“出现5点或6点”,因此事件a与互斥,从而p(a)p(a)p().7(2017武汉模拟)已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果经随机模拟产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为_答案0.25解析20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.8若随机事件a,b互斥,a,b发生的概率均不等于0,且p(a)2a,p(b)4a5,则实数a的取值范围是_答案解析由题意可知即解得所以a.9(2017池州模拟)小明忘记了微信登录密码的后两位,只记得最后一位是字母a,a,b,b中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是_答案解析小明输入密码后两位的所有情况为(4,a),(4,a),(4,b),(4,b),(5,a),(5,a),(5,b),(5,b),(6,a),(6,a),(6,b),(6,b),共12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是.10经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下表:排队人数012345概率0.10.160.30.30.10.04则该营业窗口上午9点钟时,至少有2人排队的概率是_答案0.74解析由表格可得至少有2人排队的概率p0.30.30.10.040.74.11(2017武汉调研)某鲜花店将一个月(30天)某品种鲜花的日销售量与销售天数统计如下表,将日销售量落入各组区间的频率视为概率.日销售量(枝)0,50)50,100)100,150)150,200)200,250)销售天数3天5天13天6天3天(1)求这30天中日销售量低于100枝的概率;(2)若此花店在日销售量低于100枝的时候选择2天做促销活动,求这2天恰好是在销售量低于50枝时的概率解(1)设日销售量为x枝,则p(0x50),p(50x100),所以p(0x100).(2)日销售量低于100枝的共有8天,从中任选2天做促销活动,共有28种情况;日销售量低于50枝的共有3天,从中任选2天做促销活动,共有3种情况所以所求概率p.12某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个设1张奖券中特等奖、一等奖、二等奖的事件分别为a,b,c,求:(1)p(a),p(b),p(c);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率解(1)p(a),p(b),p(c).故事件a,b,c的概率分别为,.(2)1张奖券中奖包含中特等奖、一等奖、二等奖设“1张奖券中奖”这个事件为m,则mabc.a,b,c两两互斥,p(m)p(abc)p(a)p(b)p(c).故1张奖券的中奖概率为.(3)设“1张奖券不中特等奖且不中一等奖”为事件n,则事件n与“1张奖券中特等奖或中一等奖”为对立事件,p(n)1p(ab)1.故1张奖券不中特等奖且不中一等奖的概率为.13某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示现随机选取一个成员,他属于至少2个小组的概率是_,他属于不超过2个小组的概率是_答案解析“至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为p.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”故他属于不超过2个小组的概率是p1.14袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,取到红球的概率是,取到黑球或黄球的概率是,取到黄球或绿球的概率也是,试求取到黑球、黄球和绿球的概率各是多少?解方法一从袋中选取一个球,记事件“摸到红球”、“摸到黑球”、“摸到黄球”、“摸到绿球”分别是a,b,c,d,则有p(a),p(bc)p(b)p(c),p(cd)p(c)p(d),p(bcd)p(b)p(c)p(d)1p(a)1,解得p(b),p(c),p(d),因此取到黑球、黄球、绿球的概率分别是,.方法二设红球有n个,则,所以n4,即红球有4个又取到黑球或黄球的概率是,所以黑球和黄球共5个又总球数是12,所以绿球有12453(个)又取到黄球或绿球的概率也是,所以黄球和绿球共5个,而绿球有3个,所以黄球有532(个)所以黑球有124323(个)因此取到黑球

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论