转 CR DR 的原理不通.doc_第1页
转 CR DR 的原理不通.doc_第2页
转 CR DR 的原理不通.doc_第3页
转 CR DR 的原理不通.doc_第4页
转 CR DR 的原理不通.doc_第5页
免费预览已结束,剩余11页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

转 CR DR 的原理不通导读:CR成像,CR成像技术,CR成像原理,DR成像,DR系统,DR成像技术,DR成像原理,DRCR技术比较,相同点,差异点,间接数字化成像,直接数字化成像,X线,X射线,X光数字化图像可存储在光盘,磁带和磁盘等存储器中,为电子存档与通讯系统的应用创造了条件,并可借助网络发送到其他地方进行远程评定(例如检测公司可以集中技术水平最高的底片评定人员进行评定,减少了评片人员,使评定结果更公正,更合理,或者建立由专家组成的远程评定中心,遇到疑难问题还能够用会诊的办法解决。同时也可以传送给例如待培训人员、专家顾问、监理、质量监督检查、业主等部门,他们都可以及时看到焊缝的图像,做到资料共享,极大地提高了影像信息的利用率)。在一块硬盘或一片光盘上可以存储大量的图像,每一幅图像的存储成本就很低,随着数字存储技术的不断发展,存储成本还可以进一步降低。在需要硬拷贝的地方,还可以使用激光打印机打印输出。通常以光盘储存最好,因为光盘占用储存空间极小,而且储存的信息20年以上也不会发生影象质量变化。数字化照相的应用提高了无损检测的管理水平和效率,可方便、迅速、可靠地归档,长时间存储其信噪比也不会变坏,且任意调用不会丢失信息,从而将从根本上改变传统的对胶片的手工管理方式,防止丢片和片损情况的发生。数字化存储不但节约了大量胶片,还节约了大量用于底片的存储空间和管理人员,也可以使资料的存储时间得以延长,从而降低底片的存档成本。(2)差异CR与DR的比较CRDR成像原理X射线间接转换,利用IP板作为X射线检测器,成像环节相对于DR较多X射线直接转换,直接创建有数字格式的图像,利用硒作为X射线检测器,成像环节少工作效率与DR相比操作较复杂,工作效率较低曝光时间可比CR更短,工作效率更高图像分辨率由于自身的结构,存在光学散射,使图像模糊,降低了图像分辨率,时间分辨率较差,图像质量略逊于DR无光学散射而引起的图像模糊,其清晰度主要由像素尺寸大小决定,比CR系统有更好的空间分辨率和对比度,图像层次丰富、影像边缘锐利清晰,细微结构表现出色,成像质量更高X射线剂量低由于提高了X线光子转化效率(DQE),使射线的剂量更低价格费用较DR低,无需改变现有设备昂贵,需改装已有的X线机设备发展方向与DR有相当长的共存时期并行发展最终将取代CR四.存在问题1.通用图象存储格式是很容易被一些通用的图象处理软件如PHOTOSHOP修改的,为了保证图象的真实性,防止恶意修改,杜绝人为因素的影响,防止舞弊行为的发生,最好的办法是设计特殊格式的图象,但涉及问题很多,技术也十分复杂,压缩效果还不容易达到现在的通用图象水平。比较容易实现的办法还是使用通用图象格式,关键的问题是人员素质和职业操守,但是在制度上也必须进行改进与完善,通过完善的管理机制来从客观上、制度上杜绝此事的发生,譬如采用集中多人评片,更能反映真实情况,同时进行不可更改的数据备份,把每天的图象数据传送给监理备案等机制都是可以探讨的。2.标准认可的问题-由于不可能将现有的胶片照相方式全部改成数字化照相检测方式,而一些现行标准中的有关部分条款也不适用于数字化检测,要采用数字化照相检测达到现行的胶片法检测标准,需要修改现行标准中不适合的部分,必然涉及相关的标准、甚至监理程序都将发生变化。因此,可以考虑在现行标准基础上制订针对数字化照相检测的补充条款,如黑度、清晰度、灵敏度、对比度、灰雾度等要求可以根据数字化照相检测的特点来确定适当的合格水平。3.人员培训-数字化照相检测系统能否成功应用,最关键的是人员培训。由传统的射线照相检测转入运用计算机操作与控制,改变多年来形成的工作习惯,对检测人员的培训显然是极为重要的。五.数字化射线检测技术的其他方法1.胶片扫描数字成像系统(FDRDR与CR的共同点都是将x线影像信息转化为数字影像信息,其曝光宽容度相对于普通的屏-片系统体现出某些优势;CR与DR由于采用数字技术,动态范围广,都有很宽的曝光宽容度,因而允许照相中的技术误差,即使在一些曝光条件难以掌握的场合,也能获得很好的图像;CR与DR可以根据需要进行各种图像后处理,如各种图像滤波,窗宽位调节,放大漫游,图像拼接以及距离,面积,密度测量等各种功能,为影像的细节观察,前后对比,定量分析提供支持。1成像原理DR是一种X线直接转换技术,它利用硒作为X线检测器,成像环节少;CR是一种X线间接转换技术,它利用影像板作为X线检测器,成像环节相对DR较多。DR和CR将穿透被照射物体后的X线信息转化为数字信息,灰阶由胶片的256级提升至2048级、能在计算机中处理、因而可通过软件和功能实现图像的优化、图像质量大大提高。DR的核心技术是它的平板(FP)、采用一个带有碘化铯闪烁器的单片非结晶硅面板.将吸收的X光信号转换成可见光信号、再通过低噪声光电二极管阵列吸收可见光并转换为电信号、然后通过低噪声读出电路将每个像素的数字化信号传送到图像处理器,由计算机将其集成为X线影像,以DOE为评价参数,DR是最高的。因而其图像层次丰富、影像边缘锐利清晰,细微结构表现出色;CR则将信息首先记录在涂有氟化钡的IP板上.再通过扫描装置实现数字化转换,其曝光条件仍由所匹配的X线成像设备所限制,因而图像与DR相比略逊。CR的图像对比度和噪声的表现也不错,这可能与其摄影时使用较高的mA值有关。图像质量的提高提升了识别者的满意度,大大减少了漏判和误判。2图像分辨率DR无光学散射而引起的图像模糊,其清晰度主要由像素尺寸大小决定;CR系统由于自身的结构,在受到x线照射时,影像板中的磷粒子使X线存在着散射,引起潜像模糊;在判读潜像过程中,激光扫描仪的激发光在穿过影像板的深部时产生散射,沿着路径形成受激荧光,使图像模糊,降低了图像分辨率,因此当前CR系统的不足之处主要为时间分辨率较差,不能满足动态检测的需要。3DR是今后的发展方向就目前而言,电子暗盒的结构14X17英寸,由4块758英寸采集板所组成,每块的接缝处由于工艺限制不能做的无缝,且一块损坏毕将导致4块全部更换,不但费用昂贵,还须改装现有的X线机设备,而CR的相对费用较低,且多台x线机可同时使用,无须改变现有设备。4CR系统更适用于X线屏-片摄影其非专用机型可和多台常规X线机匹配使用,且更适用于复杂部位的X线摄影;DR系统则较适用透视与点片摄影及各种造影检查,由于单机工作的通量限制,不宜取代大型医院中多机同时工作的常规X线摄影设备,但较适合于小型医疗单位和诊所的一机多用的目的。事实上,CR和DR系统在相当长的一段时间内将是一对并行发展的系统。5能显著降低患者接受的X线剂量传统胸部高KV透照较以前采用低KV已使透照剂量有所减少。而DR和CR同样采用高KV进行胸部摄片,患者所受的X线剂量更少。DR的屏感光度最高可达400,甚至1000。很低的X线量就能成像,通过数字化图像处理技术能获得理想的诊断图像。CR的屏感光度为200,与常用的增感屏相当,同样能实现小剂量成像,而使用与传统投照方法相同的剂量时,图像质量明显要好。6DR和CR强大的质量控制模块和后处理技术保证了图像质量的稳定性DR所具有的自动曝光控制技术(AutomaticExposureControl,AEC),其原理是通过设定不同的探测区域(电离室),在曝光前准确测量了打在患者身后X线胶片上的辐射的剂量,当达到屏幕一胶片联合使用的预定剂量时自动关闭X线系统.这就保证了只采用最小的所需剂量、结果图像表现出一致的黑度,由于图像中的错误而使X线检查重复进行的可能性也得到减小。同时用这种方法摄影时,也可间接地减少患者的照射剂量.通过AEC技术、配合其工作站上的多种处理模式,使成像质量稳定且操作简单化、无需进行任何人为的调整和再处理。CR之曝光指数(ExposureIndex,EI)参考值和EVP值(增加图像的视觉范围并同时保留图像细部的对比度)是影响图像质量的重要参数.不同的部位都有不同的EI和EVP值、对应有各自的图像处理曲线,能使扫描转换后的图像达最佳.因而可通过控制手动曝光量,使每次曝光后的EI值尽量接近所对应的参考值、再利用EVP处理.达到监控图像质量的目的.但由于成像和后处理缺乏直接的关联、要获得质量好的图像,仍需要一定的技术和经验以取得合适的摄影条件,使其操作的简易性和图像质量的稳定性逊于DR。7DR摄影明显缩短了病人的等候时间、体现了以病人为中心的服务宗旨DR是直接式数字摄影、在曝光后几秒即可成像,再通过PACS网络约10秒的输送存储,即可供影像工作站即时调用,调用时间为2-4秒,整个胸部正侧位从摄影到影像生成共需2分钟时间.CR在数字化处理器(Digitizer)中的扫描时间约70秒,整个摄影过程约需6分钟,与传统X线摄影的时间相当或稍快(例如使用多槽扫描方式时).在传统X线摄影中.从患者检查至发报告,共约7分钟(以一名患者照完片马上冲洗计算,若多人时此时间会更长),DR与CR和传统X线摄影比较,分别将检查时间减少了71%和20%,DR则比CR减少了67%。由此可见,DR能更有效地缩短病人检查和获得报告的时间.从而改善医疗服务质量。8另外,DR与X线系统整合成一体,其外观明亮简洁,极具个性化设计,扶手的安装设置、球管自动跟踪对应探测板等都充分考虑到被检者的舒适性和操作者的简便性。CR外形小巧,占用空间极少,其操作为触摸屏式,界面友好而简单易用。CR与X线成像系统的非对应可分离性,使CR能利用已有的摄片设备,接受通过不同途径的IP板成像并进行数字化转换,如小型移动式床边机,传统X线乳腺机或多台不同的X光机。从长期的临床使用中观察,DR和CR设备质量稳定,故障率较低,售后服务及技术支持较满意。随着数字化摄影的不断发展,DR和CR也将不断普及。DR成像速度更快,图像质量更高,能量减影、组织均衡、断层三维合成等高级应用功能进一步提高病变的捡出率,且DR曝光剂量极低。随着数字化摄影的不断发展,DR的优势将越来越为医院所认识。DR即直接数字化X射线摄影系统,是由电子暗盒、扫描控制器、系统控制器、影像监示器等组成,是直接将X线光子通过电子暗盒转换为数字化图像,是一种广义上的直接数字化X线摄影。而狭义上的直接数字化摄影即DDR(DirectDigitRadiography),通常指采用平板探测器的影像直接转换技术的数字放射摄影,是真正意义上的直接数字化X射线摄影系统。DR与CR的共同点都是将X线影像信息转化为数字影像信息,其曝光宽容度相对于普通的增感屏-胶片系统体现出某些优势:CR和DR由于采用数字技术,动态范围广,都有很宽的曝光宽容度,因而允许照相中的技术误差,即使在一些曝光条件难以掌握的部位,也能获得很好的图像;CR和DR可以根据临床需要进行各种图像后处理,如各种图像滤波,窗宽窗位调节、放大漫游、图像拼接以及距离、面积、密度测量等丰富的功能,为影像诊断中的细节观察、前后对比、定量分析提供技术支持。对两者的性能比较如下:1.成像原理:DR是一种X线直接转换技术,它利用硒作为X线检测器,成像环节少;CR是一种X线间接转换技术,它利用图像板作为X线检测器,成像环节相对于DR较多。2.图像分辨率:DR系统无光学散射而引起的图像模糊,其清晰度主要由像素尺寸大小决定;CR系统由于自身的结构,在受到X线照射时,图像板中的磷粒子使X线存在着散射,引起潜像模糊;在判读潜像过程中,激光扫描仪的激发光在穿过图像板的深部时产生着散射,沿着路径形成受激荧光,使图像模糊,降低了图像分辨率,因此当前CR系统的不足之处主要为时间分辨率较差,不能满足动态器官和结构的显示。3.DR是今后的发展方向,但就目前而言,DR电子暗盒的结构14in17in(1in=2.54cm)由4块5in8in所组成,每块的接缝处由于工艺的限制不能做得没缝,且一旦其中一块损坏必将导致4块全部更换,不但费用昂贵,还需改装已有的X线机设备,而CR相对费用较低,且多台X线机可同时使用,无需改变现有设备。4.CR系统更适用于X线平片摄影,其非专用机型可和多台常规X线摄影机匹配使用,且更适用于复杂部位和体位的X线摄影;DR系统则较适用于透视与点片摄影及各种造影检查,由于单机工作时的通量限制,不易取代大型医院中多机同时工作的常规X线摄影设备,但较适用于小医疗单位和诊所的一机多用目的。事实上,CR和DR系统在相当长的一段时间内将是一对并行发展的系统数字化X线影像技术的特点数字X线机是计算机数字图像处理技术与X射线放射技术相结合而形成的一种先进的X线机。在原有的诊断X线机直接胶片成像的基础上,通过A/D转换和D/A转换,进行实时图像数字处理,进而使图像实现了数字化。它的出现打破了传统X线机的观念,实现了人们梦寐以求的模拟X线图像向数字化X线图像的转变特点:第一,它最突出的优点是分辩率高,图像清晰、细腻,医生可根据需要进行诸如数字减影等多种图像后处理,以期获得理想的诊断效果。第二,该设备在透视状态下,可实时显示数字图像,医生再根据患者病症的状况进行数字摄影,然后通过一系列影像后处理如边缘增强、放大、黑白翻转、图像平滑等功能,可从中提取出丰富可靠的临床诊断信息,尤其对早期病灶的发现可提供良好的诊断条件。第三,数字化X线机形成的数字化图像比传统胶片成像所需的X射线计量要少,因而它能用较低的X线剂量得到高清晰的图像,同时也使病人减少了受X射线辐射的危害。第四,由于它改变了已往传统的胶片摄影方法,可使医院放射线科取消原来的图像管理方式和省去片库房,而可采用计算机无片化档案管理方法取而代之,可节省大量的资金和场地,极大地提高工作效率。此外,由于数字化X线图像的出现,结束了X线图像不能进入医院PACS系统的历史,为医院进行远程专家会诊和网上交流提供了极大的便利。另外,该设备还可进行多幅图像显示,进行图像比较,以利于医生准确判别、诊断。通过图像滚动回放功能,还可为医生回过忆整个透视检查程数字化的图像质量与所含的影像信息量可与传统的X线成像相媲美。图像处理系统可调节对比。故能达到最佳的视觉效果;摄照条件的宽容范围较大;患者接受的X线量减少。图像信息可由磁盘或光盘储存,并进行传输,这些都是数字化图像的优点。数字化图像与传统X线图像都是所摄部位总体的重迭影像,因此,传统X线能摄照的部位也都可以用DR成像,而且对DR图像的观察与分析也与传统X线相同。所不同的是DR图像是由一定数目的象素所组成。数字化图像对骨结构、关结软骨及软组织的显示优于传统的X线成像,还可行矿物盐含量的定量分析。数字化图像易于显示纵隔结构如血管和气管。对结节性病变的检出率高于传统的X线成像,但显示肺间质与肺泡病变则不及传统的X线图像。DR在观察肠管积气、气腹和结石等含钙病变优于传统X线图像。用数字化图像行体层成像优于X线体层摄影。胃肠双对比造影在显示胃小区、微小病变和肠粘膜皱襞上,数字化图像优于传统的X线造影。DR是一种新的成像技术,在不少方面优于传统的X线成像,但从效益-价格比,尚难于替换传统的X线成像。在临床应用上,DR不像CT与MRI那样不可代替。DR与DDR有什么区别一成象原理(1)DR与CR均是将模拟的X线信息转换成数字信息,两者的区别主要在于X线采集和影象转换方式的不同.DR沿用影象增强管-摄影管系统,X线投照到影象管输入屏上,形成荧光影象,亮度增益后由输出屏输出,X线摄象机采集荧光信息,经光电转换后,形成视频信号,然后由A/D转换器转换成数字信号.(2)DDR则与上述方式不同,它是一种X线直接转换技术.利用硒层或碘化铯-光电二极管直接把X线光子转换成模拟电压供数字化.所有过程全部在平板探测器内完成.转换的简单化,不仅缩短了成象时间,也使X线光子信号的损失降到了最低限度,并且减少了噪声,故图象质量有了大副提高.二图象质量(一)图象分辨力(1)DR系统的图象分辨力有影象增强管决定.不同的影象增强管分辨力有一定差别,如硫化锌镉屏的增强管分辨力不如普通的透视增强管,而近年来采用的碘化铯输入屏的使用以及输出屏的平面计,使图象分辨力的中间部分和周围部分基本趋于一致,改善了边缘影象的分辨力.(2)DDR系统在X线光子转换为电信号的过程中,没有附加设备的影象,不存在光学模糊,其空间及密度分辨力直接由转换介质和象素排中象素的大小决定.目前DDR的空间分辨力可达127um(象素大小),密度分辨力可达1216B.其分辨力可与400速屏胶系统相比.(二)调制传递函数(MIF)由于没有中间转换步骤,DDR的MIF是最好的(与CRDR比较)(三)暴光宽容度都有很宽的暴光宽容度.DDR的暴光宽容度可与400速的屏胶系统相比.其宽容度可达20000:1.(四)噪声(1)DR系统中噪声源,存在于摄象系统中的输出评,输入屏荧光增益等过程.(2)DRD中,噪声源主要是结构噪声,电子链中噪声,以及把X线转换为电荷的几率波引起的噪声.因为DDR系统直接获得数字图象,使电子链中噪声大为降低,相比之下,DDR的信噪比CR高的多.三暴光剂量DDR能直接获得数字图象数据,其X线量子转换率(DQR)高,暴光剂量明显减少.四工作效率DR系统由于X线转换过程的复杂性,而且在模拟影象数字化数字信息的储存及输出等方面和其他数字化成象设备基本相同,因此没有明显提高.而DDR系统在暴光完毕后,经过7s操作员就能看到定位图象,从而判断位置条件是否合适,可以立即消除由于技术运动和定位因素而导致的影象不当,避免因上述原因造成的重复拍片.而且固定在设备上的平板探测器可以直接输出数字信号,图象的传输仅需几秒即可完成.不需换取和扫描片夹,这样不仅提高了工作效率,而且可减轻技术员劳动强度.五系统兼容性(1)由于DR系统价格昂贵,且于传统的X线装置不能兼容,从而极大的限制了他的普及和推广(2)DDR可用于平床立式胸片架,目前已开始向其它影象设备兼容的方向发展,如乳腺摄影心血管摄影机.其快速的成象速度使动态成象成为可能.整个系统设备简单,且可和传统X线设备兼容,降低了医院的改造成本.以上内容摘自医学数字成象技术em07CR和DR成像技术原理、比较、图片(4)2)直接转换型DR系统(DirectDR,简称DDR)应用的DirectRay技术可以直接获取和转换X射线能量成为数字信号,不需要通过媒介或其他方法获取和转换入射的X射线能量。目前有两种,一种为线扫描,一种为FPD。直接FPD的结构主要是由非晶硒层(amorphousSelemium,a-Se)加薄膜半导体阵列(ThinFilmTransistorarray,TFT)构成平板检测器。非晶硒是一种光电导材料,经X射线曝光后由于电导率的改变就形成图像电信号,通过TFT检测阵列俘获与转换X射线能量直接成为数字信号,再经A/D转换、处理而获得数字化图像并在显示器上显示。线扫描成像探测器为线状结构,采用动态线扫描技术直接接收X射线光子,有两种形式,一种为多丝正比室,一种是电离室。从X射线管发出的圆锥扇形X射线束,经水平狭缝形成平面扇形X射线束,通过被透照物体射入水平放置的探测器窗口。机械扫描系统使X射线管、水平狭缝及探测器沿垂直方向作均匀的同步运动,每到一个新位置作一次水平探测记录,如此重复进行,从头到尾扫描一次就完成一幅X射线图像的拍摄。图像的采集与处理系统由前置放大器、A/D转换器、缓存器、CPU等组成。整个曝光过程完成后,在计算机内存中形成一幅640x640或1024x1024矩阵的数字图像。线扫描的动态范围与系统的探测灵敏度和密度分辨率有关,线扫描具有独特的大动态范围,当显示器质量很高时可以观察到120倍以上的动态对比图像,比传统X射线机对胶片拍照更好,可以清晰地在一次拍片中同时再现密度悬殊的组织。线扫描成像技术中,X射线被严格限制在很窄的缝隙中,克服了散射线造成的干扰,本底噪声几乎为0,探测灵敏度高,使原本被本底噪声淹没的微弱的X线也能被检测出来,能够分辨出面成像不能看到的更加细微的密度差别,密度分辨率更高。线扫描成像的缺点是需要一定的扫描时间,一张14x17英寸大小的区域最快需2秒钟,所以不能实现实时扫描,不适应动态摄影。线扫描成像的扫描时间短,所需X射线剂量低,动态范围宽和较低的价格,使其具有良好的发展前景,而且可以通过类似相控阵自动超声波(AUT)的导轨、现场扫描,线性阵列沿管道焊缝外部均匀运动一周即可将结果读入并进入计算机。直接转换型DR的平板检测器为多层平板状结构,但没有荧光转换层,它直接将X射线转换成电信号,能提供一个完整的扫描场,可在14x17英寸/35x43cm的图像面积上使用2560x3072的探测单元矩阵(例如由二维排列的139x139m薄膜晶体管TFT层上涂敷500m厚的非晶硒,其上是介质层和表面电极层及保护层等构成)。在探测器结构上施加一个偏压,当入射的X线光子在非晶硒层激发出电子穴偶对时,电子和空穴在偏置电压下反向运动,产生电流,与每个探测单元相连的单独的存储电容收集这些电荷在阵列中以定制的电子学规则读出,亦即在TFT中形成电信号,经放大电路和控制电路采集各TFT像素单元电荷,并经A/D转换变成数字信号,送到计算机处理以数字图像显示便于即时观察。因此,DR检测系统的组成可以简单地表述为:射线源-检测对象-射线成像探测器-图像数字化系统-数字图像处理系统。DR的装置包括射线成像探测器及影像后处理和记录部分(计算机、打印机和其他存储介质)。非晶硒平板检测器的改进和提高主要表现在进一步缩小像素单元以提高图像的分辨率;提高检测器对X线的转换率以降低X射线剂量;以及配套研发高质量的图像处理软件以进一步提高图像质量。从理论上说,直接DR板的量子转换效率要比间接DR板更高。但在目前,间接DR板的稳定性较好。据估计,随着DR系统的不断改进和提高,产品日渐成熟,价格降低,它们将能逐步取代CR,但在目前,DR和CR将会共存一段较长时间。美国瓦里安公司的DR平板探测器各种影像设备及其成像原理超声超声原理:超声是超过正常人耳能听到的声波,频率在20000赫兹(Hertz,Hz)以上。超声在介质中以直线传播,有良好的指向性.这是可以用超声对人体器官进行探测的基础。当超声在传播过程中会发生反射,折射,散射,衰减等。反射回来的超声为回声。多普勒应(Dopplereffect):活动的界面对声源作相对运动可改变反射回声的回率。这种效应使超声能探查心脏活动和胎儿活动以及血流状态。成像原理:超声检查是利用超声的物理特性和人体器官组织声学性质上的差异,以波形、曲线或图像的形式显示和记录,借以进行疾病诊断的检查方法。人体各种器官与组织都有它特定的声阻抗和衰减特性,因而构成声阻抗上的差别和衰减上的差异。超声射入体内,由表面到深部,将经过不同声阻抗和不同衰减特性的器官与组织,从而产生不同的反射与衰减。这种不同的反射与衰减是构成超声图像的基础。将接收到的回声,根据回声强弱,用明暗不同的光点依次显示在影屏上,则可显出人体的断面超声图像,称这为声像图(sonogram或echogram)。A型超声:早期应用幅度调制型(amplitudemode),即A型超声,以波幅变化反映回波情况。B型超声:灰度调制型(brightnessmode),即B型超声,系以明暗不同的光点反映回声变化,在影屏上显示964个等级灰度的图像,强回声光点明亮,弱回声光点黑暗。常规X线X线发射原理:高速行进的电子流被物质阻挡即可产生X线。具体说,X线是在真空管内高速行进成束的电子流撞击钨(或钼)靶时而产生的。因此,X线发生装置,主要包括X线管、变压器和操作台。X线成像的基础:(1)穿透性-X线波长很短,具有很强的穿透力,能穿透一般可见光不能穿透的各种不同密度的物质,并在穿透过程中受到一定程度的吸收即衰减。X线的穿透力与X线管电压密切相关,电压愈高,所产生的X线的波长愈短,穿透力也愈强;反之,电压低,所产生的X线波长愈长,其穿透力也弱。另一方面,X线的穿透力还与被照体的密度和厚度相关。X线穿透性是X线成像的基础。(2)摄影效应-涂有溴化银的胶片,经X线照射后,可以感光,产生潜影,经显、定影处理,感光的溴化银中的银离子(Ag+)被还原成金属银(Ag),并沉淀于胶片的胶膜内。此金属银的微粒,在胶片上呈黑色。而未感光的溴化银,在定影及冲洗过程中,从X线胶片上被洗掉,因而显出胶片片基的透明本色。依金属银沉淀的多少,便产生了黑和白的影像。所以,摄影效应是X线成像的基础。透视检查的原理:荧光效应-X线能激发荧光物质(如硫化锌镉及钨酸钙等),使产生肉眼可见的荧光。即X线作用于荧光物质,使波长短的X线转换成波长长的荧光,这种转换叫做荧光效应。这个特性是进行透视检查的基础。放射防护学和放射治疗学的基础:电离效应-X线通过任何物质都可产生电离效应。空气的电离程度与空气所吸收X线的量成正比,因而通过测量空气电离的程度可计算出X线的量。X线进入人体,也产生电离作用,使人体产生生物学方面的改变,即生物效应。它是放射防护学和放射治疗学的基础。X线成像的基本条件:首先,X线应具有一定的穿透力,这样才能穿透照射的组织结构;第二,被穿透的组织结构,必须存在着密度和厚度的差异,这样,在穿透过程中被吸收后剩余下来的X线量,才会是有差别的;第三,这个有差别的剩余X线,仍是不可见的,还必须经过显像这一过程,例如经X线片、荧屏或电视屏显示才能获得具有黑白对比、层次差异的X线影像。透视(Fluoroscopy):使X线透过人体被检查部位并在荧光屏上形成影像,称为透视。透视一般在暗室内进行,检查前必须做好暗适应,带深色眼镜并有暗室内适应一段时间。透视的优点是经济,操作简便,能看到心脏、横膈及胃肠等活动情况,同时还可转动患者体位,作多方面观察,以显示病变及其特征,便于分析病变的性质,多用于胸部及胃肠检查。缺点是荧光影象较暗。细微病变(如粟粒型肺结核等)和密度、厚度较大的部位(如头颅、脊椎等)看不太清楚,而且,透视仅有书写记录,患者下次复查时不易做精确的比较。照相(Radiography):亦称摄影。X线透过人体被检查的部位并在胶片上形成影像,称为X线照相,胶片曝光后须经显影、定影、水洗及晾干(或烤干)等步骤,操作复杂,费用较贵。照片所见影像比透视清楚,适用于头颅、脊椎及腹部等部位检查。照片还可留作永久记录,便于分析对比、集体讨论和复查比较。但照片不能显示脏器活动状态。一张照片只反映一个体位(体位即照相位置)的X线征象,根据病情和部位,有时需要选定多个投照体位。PET英文名:PositronEmissionComputedTomography,正电子发射型计算机断层显像。成像原理:其原理是将人体代谢所必需的物质,如:葡萄糖、蛋白质、核酸、脂肪酸等标记上短寿命的放射性核素(如18F)制成显像剂(如氟代脱氧葡萄糖,简称FDG)注入人体后进行扫描成像。因为人体不同组织的代谢状态不同,所以这些被核素标记了的物质在人体各种组织中的分布也不同,如:在高代谢的恶性肿瘤组织中分布较多,这些特点能通过图像反映出来,从而可对病变进行诊断和分析。MRI英文名:Magneticresonanceimaging磁共振成像成像原理:磁共振成像是利用原子核在磁场内共振所产生信号经重建成像的一种成像技术。含单数质子的原子核,例如人体内广泛存在的氢原子核,其质子有自旋运动,带正电,产生磁矩,有如一个小磁体。小磁体自旋轴的排列无一定规律。但如在均匀的强磁场中,则小磁体的自旋轴将按磁场磁力线的方向重新排列。用特定频率的射频脉冲(radionfrequency,RF)进行激发,作为小磁体的氢原子核吸收一定量的能而共振,即发生了磁共振现象。停止发射射频脉冲,则被激发的氢原子核把所吸收的能逐步释放出来,其相位和能级都恢复到激发前的状态。这一恢复过程称为弛豫过程(relaxationprocess),而恢复到原来平衡状态所需的时间则称之为弛豫时间(relaxationtime)。人体不同器官的正常组织与病理组织的T1是相对固定的,而且它们之间有一定的差别,T2也是如此。这种组织间弛豫时间上的差别,是MRI的成像基础。MRI的参数:MRI是有T1、T2和自旋核密度(P)等几个参数,其中T1与T2尤为重要。因此,获得选定层面中各种组织的T1(或T2)值,就可获得该层面中包括各种组织影像的图像。T1:有两种弛豫时间,一种是自旋-晶格弛豫时间(spin-latticerelaxationtime)又称纵向弛豫时间(longitudinalrelaxationtime)反映自旋核把吸收的能传给周围晶格所需要的时间,也是90射频脉冲质子由纵向磁化转到横向磁化之后再恢复到纵向磁化激发前状态所需时间,称T1。T2:另一种是自旋-自旋弛豫时间(spin-spinrelaxationtime),又称横向弛豫时间(transverserelaxationtime)反映横向磁化衰减、丧失的过程,也即是横向磁化所维持的时间,称T2。T2衰减是由共振质子之间相互磁化作用所引起,与T1不同,它引起相位的变化。MRI的磁体分类:磁体有常导型、超导型和永磁型三种,直接关系到磁场强度、均匀度和稳定性,并影响MRI的图像质量。因此,非常重要。通常用磁体类型来说明MRI设备的类型。常导型的线圈用铜、铝线绕成,磁场强度最高可达0.150.3T*,超导型的线圈用铌-钛合金线绕成,磁场强度一般为0.352.0T,用液氦及液氮冷却;永磁型的磁体由用磁性物质制成的磁砖所组成,较重,磁场强度偏低,最高达0.3T。MRI的射频系统:射频发射器与MR信号接收器为射频系统,射频发射器是为了产生临床检查目的不同的脉冲序列,以激发人体内氢原子核产生MR信号。射频发射器及射频线圈很象一个短波发射台及发射天线,向人体发射脉冲,人体内氢原子核相当一台收音机接收脉冲。脉冲停止发射后,人体氢原子核变成一个短波发射台,而MR信号接受器则成为一台收音机接收MR信号。脉冲序列发射完全在计算机控制之下。ECT名称解析:ECT是同位素发射计算机辅助断层显像的英文缩写。ECT是由电子计算机断层(CT)与核医学示踪原理相结合的高科技技术。特点:ECT兼具CT和核医学两种优势,较CT的容积采集信息量大,是当前唯一的一种活体生理、生化、功能、代谢信息的四维显像方式。其示踪剂适应面广,特异性高,放射性小,不干扰体内环境的稳定,有独到的诊断价值。DSA英文名:digitalsubtractionangiography数字减影血管造影名称解析:DSA是数字X线成像(digitalradiography,DR)的一个组成部分,是利用计算机处理数字化的影像信息,以消除骨骼和软组织影的减影技术,是新一代血管造影的成像技术。时间减影法:(temporalsubtractionmethod)经导管内快速注入有机碘水造影剂。在造影剂到达欲查血管之前,血管内造影剂浓度处于高峰和造影剂被廓清这段时间内,使检查部位连续成像,比如每秒成像一帧,共得图像10帧。在这系列图像中,取一帧血管内不含造影剂的图像和含造影剂最多的图像,用这同一部位的两帧图像的数字矩阵,经计算机行数字减影处理,使两个数字矩阵中代表骨骼及软组织的数字被抵销,而代表血管的数字不被抵销。这样,这个经计算机减影处理的数字矩阵经数字/模拟转换器转换为图像,则没有骨骼和软组织影像,只有血管影像,达到减影目的。这两帧图像称为减影对,因系在不同时间所得,故称为时间减影法。时间减影法的各帧图像是在造影过程中所得,易因运动而不尽一致造成减影对的不能精确重合,即配准不良,致使血管影像模糊。CT英文名:Computedtomography电子计算机体层摄影

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论