七级数学下册 期末复习三 整式的乘除校本作业 (新版)浙教版.doc_第1页
七级数学下册 期末复习三 整式的乘除校本作业 (新版)浙教版.doc_第2页
七级数学下册 期末复习三 整式的乘除校本作业 (新版)浙教版.doc_第3页
七级数学下册 期末复习三 整式的乘除校本作业 (新版)浙教版.doc_第4页
七级数学下册 期末复习三 整式的乘除校本作业 (新版)浙教版.doc_第5页
免费预览已结束,剩余2页可下载查看

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

期末复习三 整式的乘除复习目标要求知识与方法了解整数指数范围内的幂的运算法则零指数幂的概念,负整数指数幂的概念整式乘除运算的法则理解同底数幂的运算单项式乘单项式的运算,单项式乘多项式的运算,多项式乘多项式的运算平方差公式,完全平方公式的运用单项式除以单项式的运算,多项式除以单项式的运算运用整式整除运算的实际应用用科学记数法表示绝对值较小的数必备知识与防范点一、必备知识:1 整数指数幂及其运算法则:aman= ;aman= ;(am)n= ;(ab)n= (m,n为整数);a0= (a0);a-p= (a0,p是正整数)2 单项式与单项式相乘,把它们的 、 分别相乘,其余 不变,作为积的因式 单项式与多项式相乘,就是用单项式去乘 ,再把所得的积 多项式与多项式相乘,先用一个多项式的 乘另一个多项式的 ,再把所得的积 3 乘法公式平方差公式: 完全平方公式: 4 单项式相除,把 、 分别相除,作为商的因式 对于只有 里含有的字母,则连同它的指数作为商的一个因式 多项式除以单项式,先把这个多项式的 除以这个单项式,再把所得的商 二、防范点:1 进行整数指数幂运算时,注意搞清指数的加、减或乘的运算2 整式乘法运算中能用公式使用公式,不能用公式按法则一项一项运算,注意不要遗漏3 完全平方公式中间项不要遗漏例题精析考点一 整数指数幂的相关运算例1 (1)下列运算正确的是( )a x3x5=x15 b (2x2)3=8x6c x9x3=x3 d a2+a=a3(2)计算:m3m(-m2)-(2m2)3;(-1)2016+(-)-3-(-3)0.(3)已知3m=5,3n=4,求32m-n的值反思:整数指数幂的运算关键要弄清各种运算法则,不要混淆而产生错误 如(3)这类题也常出现,一定要清楚指数的加、减运算,对应的是幂的乘、除运算,不要产生错误考点二 整式的乘除运算例2 (1)下列四个计算式子:a(a-2b)=a2-2ab;(a+2)(a-3)=a2-6;(a-2)2=a2-4a+4;(a2-2ab+a)a=a-2b,其中正确的个数有( )a 1个 b 2个 c 3个 d 4个(2)若(x-1)(x+3)=x2+mx+n,那么m,n的值是( )a m=1,n=3 b m=4,n=5c m=2,n=-3 d m=-2,n=3(3)先化简,再求值:(x-y)(x+y)+(x-y)2-(6x2y-2xy2)(2y),其中x=-2,y=已知x2-4x-1=0,求代数式(2x-3)2-(x+y)(x-y)-y2的值反思:整式的乘除运算要区分清楚两个乘法公式,与公式不符的多项式乘法只能每一项乘每一项,不要乱用公式 平方差公式关键是找相同项和相反项,完全平方公式注意有三项,不要遗漏中间项考点三 平方差及完全平方公式的应用例3 (1)下列各式中,不能用平方差公式计算的是( )a (-4x+3y)(4x+3y)b (4x-3y)(3y-4x)c (-4x+3y)(-4x-3y)d (4x+3y)(4x-3y)(2)若x2+2(m-1)x+16是完全平方式,则常数m的值等于( )a 5 b -5 c -3 d 5或-3(3)利用公式简便计算:56; 79.82.(4)已知a+b=5,ab=,求a2+b2的值;x+y=3,4xy=3,求(x-y)2的值;已知(a-b)2=7,(a+b)2=13,求ab的值;已知a+=5,求a2+的值反思:两公式的应用是本章的重点,特别是完全平方公式首先当完全平方式中间项系数未知时注意有两种情况,不要遗漏;其次完全平方公式可以进行多种变形,利用公式的变形可以解决两数和、差、积及两数平方和之间的关系校内练习1 已知某种植物花粉的直径约为0.00035米,用科学记数法表示是( )a 3.5104米 b 3.510-4米c 3.510-5米 d 3.510-6米2 若(x-2y)2=(x+2y)2+a,则a等于( )a4xy b-4xy c8xy d-8xy3 已知(x+m)与(x+3)的乘积中不含x的一次项,则常数m的值为( )a -3 b 3 c 0 d 14 计算:a3a2= ;(-3ab2)3= 5 若(a+b)2=9,(a-b)2=4,则a2+b2= 6 若x2+5x+8=a(x+1)2+b(x+1)+c,则a= ,b= ,c= 7 计算:(1)(3x+1)(x-2)-2x(x+1);(2)8x3(-2x)2-(2x2-x)(x).8 先化简,再求值:(x+2y)2-2(x-y)(x+y)+2y(x-3y),其中x=-2,y=9. 为了交通方便,在一块长a(m),宽b(m)的长方形绿地内修两条道路,横向道路为平行四边形,纵向道路为长方形,宽均为1m(如图),余下绿地种上每平方米为30元的花木,求种花木的总费用10. 将同样大小的22块长方形纸片拼成如图的形状,设长方形纸片的长为a,宽为b.(1)请你仔细观察图形,用等式表示出a与b之间的关系;(2)用含b的代数式表示阴影部分的面积;(3)通过观察,你还能发现什么?参考答案期末复习三 整式的乘除【必备知识与防范点】1. am+n am-n amn anbn 1 2. 系数 同底数幂 字母连同它的指数 多项式的每一项 相加 每一项 每一项 相加3. (a+b)(a-b)=a2-b2 (ab)2=a22ab+b24. 系数 同底数幂 被除式 每一项 相加【例题精析】例1 (1)b (2)m3m(-m2)-(2m2)3=-m6-8m6=-9m6(-1)2016+(-)-3-(-3)0=1+(-8)-1=-8(3)32m-n=(3m)23n=524=例2 (1)b (2)c(3)原式=x2-y2+x2-2xy+y2-(3x2-xy)=-x2-xy,当x=-2,y=时,原式=-x2-xy=-(-2)2-(-2)=-.原式=4x2-12x+9-x2+y2-y2=3x2-12x+9=3(x2-4x)+9,当x2-4x-1=0时,x2-4x=1,故原式=3(x2-4x)+9=31+9=12.例3 (1)b (2)d (3)56=(6-)(6+)=62-()2=36-=3579.82=(80-0.2)2=802-2800.2+0.22=6400-32+0.04=6368.04(4)a2+b2=(a+b)2-2ab=52-=(x-y)2=(x+y)2-4xy=32-3=6ab=a2+=(a+)2-2=52-2=23【校内练习】13. bda4. a -27a3b65. 6.56. 1 3 47. (1)原式=3x2-6x+x-2-2x2-2x=x2-7x-2(2)原式=8x3(4x2)-(4x-2)=2x-4x+2=-2x+28. 原式=x2+4xy+4y2-2x2+2y2+2xy-6y2=-x2+6xy,当x=-2,y=时,原式=-x2+6xy=-(-2)2+6(-2)=-10.9. 由题意,得总费

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论