




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2015-2016学年湖北省武汉市武昌区七校联考九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1方程3x24x1=0的二次项系数和一次项系数分别为()A3和4B3和4C3和1D3和12二次函数y=x22x+2的顶点坐标是()A(1,1)B(2,2)C(1,2)D(1,3)3将ABC绕O点顺时针旋转50得A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A130B50C40D604用配方法解方程x2+6x+4=0,下列变形正确的是()A(x+3)2=4B(x3)2=4C(x+3)2=5D(x+3)2=5下列方程中没有实数根的是()Ax2x1=0Bx2+3x+2=0C2015x2+11x20=0Dx2+x+2=06平面直角坐标系内一点P(2,3)关于原点对称的点的坐标是()A(3,2)B(2,3)C(2,3)D(2,3)7如图,O的直径CD=10cm,AB是O的弦,ABCD,垂足为M,OM:OC=3:5,则AB的长为()A cmB8cmC6cmD4cm8已知抛物线C的解析式为y=ax2+bx+c,则下列说法中错误的是()Aa确定抛物线的形状与开口方向B若将抛物线C沿y轴平移,则a,b的值不变C若将抛物线C沿x轴平移,则a的值不变D若将抛物线C沿直线l:y=x+2平移,则a、b、c的值全变9如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是()A64B16C24D3210已知二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a0),且a2+ab+ac0,下列说法:b24ac0;ab+ac0;方程ax2+bx+c=0有两个不同根x1、x2,且(x11)(1x2)0;二次函数的图象与坐标轴有三个不同交点,其中正确的个数是()A1B2C3D4二、填空题(共6小题,每小题3分,共18分)11抛物线y=x2x1的对称轴是_12已知x=(b24c0),则x2+bx+c的值为_13O的半径为13cm,AB,CD是O的两条弦,ABCD,AB=24cm,CD=10cm则AB和CD之间的距离_14如图,线段AB的长为1,C在AB上,D在AC上,且AC2=BCAB,AD2=CDAC,AE2=DEAD,则AE的长为_15抛物线的部分图象如图所示,则当y0时,x的取值范围是_16如图,ABC是边长为a的等边三角形,将三角板的30角的顶点与A重合,三角板30角的两边与BC交于D、E两点,则DE长度的取值范围是_三、解答题(共8小题,共72分)17解方程:x2+x2=018已知抛物线的顶点坐标是(3,1),与y轴的交点是(0,4),求这个二次函数的解析式19已知x1、x2是方程x23x5=0的两实数根(1)求x1+x2,x1x2的值;(2)求2x12+6x22015的值20如图所示,ABC与点O在1010的网格中的位置如图所示(1)画出ABC绕点O逆时针旋转90后的图形;(2)画出ABC绕点O逆时针旋转180后的图形;(2)若M能盖住ABC,则M的半径最小值为_21如图,在O中,半径OA垂直于弦BC,垂足为E,点D在CA的延长线上,若DAB+AOB=60(1)求AOB的度数;(2)若AE=1,求BC的长22飞机着陆后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是:S=60t1.5t2(1)直接指出飞机着陆时的速度;(2)直接指出t的取值范围;(3)画出函数S的图象并指出飞机着陆后滑行多远才能停下来?23如图,ABC是边长为6cm的等边三角形,点D从B点出发沿BA方向在线段BA上以a cm/s速度运动,与此同时,点E从线段BC的某个端点出发,以b cm/s速度在线段BC上运动,当D到达A点后,D、E运动停止,运动时间为t(秒)(1)如图1,若a=b=1,点E从C出发沿CB方向运动,连AE、CD,AE、CD交于F,连BF当0t6时:求AFC的度数;求的值;(2)如图2,若a=1,b=2,点E从B点出发沿BC方向运动,E点到达C点后再沿CB方向运动当t3时,连DE,以DE为边作等边DEM,使M、B在DE两侧,求M点所经历的路径长24定义:我们把平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹(满足条件的所有点所组成的图形)叫做抛物线点F叫做抛物线的焦点,直线l叫做抛物线的准线(1)已知抛物线的焦点F(0,),准线l:,求抛物线的解析式;(2)已知抛物线的解析式为:y=x2n2,点A(0,)(n0),B(1,2n2),P为抛物线上一点,求PA+PB的最小值及此时P点坐标;(3)若(2)中抛物线的顶点为C,抛物线与x轴的两个交点分别是D、E,过C、D、E三点作M,M上是否存在定点N?若存在,求出N点坐标并指出这样的定点N有几个;若不存在,请说明理由2015-2016学年湖北省武汉市武昌区七校联考九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1方程3x24x1=0的二次项系数和一次项系数分别为()A3和4B3和4C3和1D3和1【考点】一元二次方程的一般形式【分析】根据方程的一般形式和二次项系数以及一次项系数的定义即可直接得出答案【解答】解:3x24x1=0,方程3x24x1=0的二次项系数是3,一次项系数是4;故选B【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a0)特别要注意a0的条件这是在做题过程中容易忽视的知识点在一般形式中ax2叫二次项,bx叫一次项,c是常数项其中a,b,c分别叫二次项系数,一次项系数,常数项2二次函数y=x22x+2的顶点坐标是()A(1,1)B(2,2)C(1,2)D(1,3)【考点】二次函数的性质【分析】根据顶点坐标公式,可得答案【解答】解:y=x22x+2的顶点横坐标是=1,纵坐标是=1,y=x22x+2的顶点坐标是(1,1)故选:A【点评】本题考查了二次函数的性质,二次函数的顶点坐标是(,)3将ABC绕O点顺时针旋转50得A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A130B50C40D60【考点】旋转的性质【分析】先根据题意画出图形,利用旋转的性质得出OA=OA1,OB=OB1,AB=A1B1,那么根据SSS证明长OABOA1B1,得到OAB=OA1B1,由等角的补角相等得出OAM=OA1M设A1M与OA交于点D,在OA1D与MAD中,根据三角形内角和定理即可求出M=A1OD=50【解答】解:如图,ABC绕O点顺时针旋转50得A1B1C1(A、B分别对应A1、B1),则A1OA=50,OA=OA1,OB=OB1,AB=A1B1设直线AB与直线A1B1交于点M由SSS易得OABOA1B1,OAB=OA1B1,OAM=OA1M,设A1M与OA交于点D,在OA1D与MAD中,DAM=DA1O,ODA1=MDA,M=A1OD=50故选B【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了全等三角形的判定与性质,补角的性质以及三角形内角和定理证明出OAM=OA1M是解题的关键4用配方法解方程x2+6x+4=0,下列变形正确的是()A(x+3)2=4B(x3)2=4C(x+3)2=5D(x+3)2=【考点】解一元二次方程-配方法【分析】把常数项4移到等号的右边,再在等式的两边同时加上一次项系数6的一半的平方,配成完全平方的形式,从而得出答案【解答】解:x2+6x+4=0,x2+6x=4,x2+6x+9=5,即(x+3)2=5故选:C【点评】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数5下列方程中没有实数根的是()Ax2x1=0Bx2+3x+2=0C2015x2+11x20=0Dx2+x+2=0【考点】根的判别式【分析】分别求出各个选项中一元二次方程根的判别式,进而作出判断【解答】解:A、x2x1=0,=(1)24(1)=90,方程有两个不相等的根,此选项错误;B、x2+3x+2=0,=3242=10,方程有两个不相等的根,此选项错误;C、2015x2+11x20=0,=11242015(20)0,方程有两个不相等的根,此选项错误;D、x2+x+2=0,=1242=70,方程没有实数根,此选项正确;故选D【点评】本题主要考查了根的判别式的知识,利用一元二次方程根的判别式(=b24ac)判断方程的根的情况一元二次方程ax2+bx+c=0(a0)的根与=b24ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根6平面直角坐标系内一点P(2,3)关于原点对称的点的坐标是()A(3,2)B(2,3)C(2,3)D(2,3)【考点】关于原点对称的点的坐标【专题】常规题型【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答【解答】解:点P(2,3)关于原点对称的点的坐标是(2,3)故选:D【点评】本题主要考查了关于原点对称的点的坐标的特征,熟记特征是解题的关键7如图,O的直径CD=10cm,AB是O的弦,ABCD,垂足为M,OM:OC=3:5,则AB的长为()A cmB8cmC6cmD4cm【考点】垂径定理;勾股定理【分析】由于O的直径CD=10cm,则O的半径为5cm,又已知OM:OC=3:5,则可以求出OM=3,OC=5,连接OA,根据勾股定理和垂径定理可求得AB【解答】解:如图所示,连接OAO的直径CD=10cm,则O的半径为5cm,即OA=OC=5,又OM:OC=3:5,所以OM=3,ABCD,垂足为M,AM=BM,在RtAOM中,AM=4,AB=2AM=24=8故选B【点评】本题考查了垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个8已知抛物线C的解析式为y=ax2+bx+c,则下列说法中错误的是()Aa确定抛物线的形状与开口方向B若将抛物线C沿y轴平移,则a,b的值不变C若将抛物线C沿x轴平移,则a的值不变D若将抛物线C沿直线l:y=x+2平移,则a、b、c的值全变【考点】二次函数图象与几何变换【分析】根据平移的性质判断即可【解答】解:平移的基本性质:平移不改变图形的形状和大小;抛物线C的解析式为y=ax2+bx+c,a确定抛物线的形状与开口方向;若将抛物线C沿y轴平移,顶点发生了变化,对称轴没有变化,a的值不变,则不变,所以b的值不变;若将抛物线C沿直线l:y=x+2平移,则a的值不变,故选D【点评】本题考查平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等9如图,四边形ABCD的两条对角线互相垂直,AC+BD=16,则四边形ABCD的面积最大值是()A64B16C24D32【考点】二次函数的最值【分析】直接利用对角线互相垂直的四边形面积求法得出S=ACBD,再利用配方法求出二次函数最值【解答】解:设AC=x,四边形ABCD面积为S,则BD=16x,则:S=ACBD=x(16x)=(x8)2+32,当x=8时,S最大=32;所以AC=BD=8时,四边形ABCD的面积最大,故选D【点评】本题考查了二次函数最值以及四边形面积求法,正确掌握对角线互相垂直的四边形面积求法是解题关键10已知二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a0),且a2+ab+ac0,下列说法:b24ac0;ab+ac0;方程ax2+bx+c=0有两个不同根x1、x2,且(x11)(1x2)0;二次函数的图象与坐标轴有三个不同交点,其中正确的个数是()A1B2C3D4【考点】二次函数图象与系数的关系【分析】根据题意把a的符号分成两种情况,再由a2+ab+ac0判断出a+b+c的符号,即可得出当x=1时,y的符号,从而得出b+c的符号,再得出方程ax2+bx+c=0有一个根大于1,一个根小于1,即可得出(x11)(x21)0;b24ac0;抛物线和坐标轴有三个交点【解答】解:当a0时,a2+ab+ac0,a+b+c0,b+c0,如图1,b24ac0,故错误;a(b+c)0,故正确;方程ax2+bx+c=0有两个不同根x1、x2,且x11,x21,(x11)(x21)0,即(x11)(1x2)0,故正确;二次函数的图象与坐标轴有三个不同交点,故正确;故选C【点评】本题考查了二次函数的图象与系数的关系,掌握分类讨论思想是解题的关键二、填空题(共6小题,每小题3分,共18分)11抛物线y=x2x1的对称轴是直线x=【考点】二次函数的性质【分析】根据抛物线对称轴公式进行计算即可得解【解答】解:对称轴为直线x=,即直线x=故答案为:直线x=【点评】本题考查了二次函数的性质,主要利用了对称轴公式,比较简单12已知x=(b24c0),则x2+bx+c的值为0【考点】解一元二次方程-公式法【分析】把x的值代入代数式,再进行计算即可【解答】解:x=(b24c0),x2+bx+c=()2+b+c=+c=0故答案为:0【点评】本题考查了一元二次方程,实数的运算法则,求代数式的值的应用,能根据实数的运算法则进行计算是解此题的关键13O的半径为13cm,AB,CD是O的两条弦,ABCD,AB=24cm,CD=10cm则AB和CD之间的距离7cn或17cm【考点】垂径定理;勾股定理【专题】分类讨论【分析】作OEAB于E,交CD于F,连结OA、OC,如图,根据平行线的性质得OFCD,再利用垂径定理得到AE=AB=12,CF=CD=5,接着根据勾股定理,在RtOAE中计算出OE=5,在RtOCF中计算出OF=12,然后分类讨论:当圆心O在AB与CD之间时,EF=OF+OE;当圆心O不在AB与CD之间时,EF=OFOE【解答】解:作OEAB于E,交CD于F,连结OA、OC,如图,ABCD,OFCD,AE=BE=AB=12,CF=DF=CD=5,在RtOAE中,OA=13,AE=12,OE=5,在RtOCF中,OC=13,CF=5,OF=12,当圆心O在AB与CD之间时,EF=OF+OE=12+5=17;当圆心O不在AB与CD之间时,EF=OFOE=125=7;即AB和CD之间的距离为7cn或17cm故答案为7cn或17cm【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧也考查了勾股定理学会运用分类讨论的思想解决数学问题14如图,线段AB的长为1,C在AB上,D在AC上,且AC2=BCAB,AD2=CDAC,AE2=DEAD,则AE的长为2【考点】黄金分割【分析】设AC=x,则BC=ABAC=2x,根据AC2=BCAB求出AC,同理可得出AD和AE,从而得出答案【解答】解:设AC=x,则BC=ABAC=1x,AC2=BCAB,x2=1x,解得:x1=,x2=(不合题意,舍去),AC=,AD2=CDAC,AD=,AE2=DEAD,AE=2;故答案为:2【点评】本题考查了黄金分割的应用,关键是明确黄金分割所涉及的线段的比15抛物线的部分图象如图所示,则当y0时,x的取值范围是x3或x1【考点】二次函数与不等式(组)【分析】由函数图象可知抛物线的对称轴为x=1,从而可得到抛物线与x轴的另一个交点坐标为(3,0),y0,找出抛物线位于x轴下方部分x的取值范围即可【解答】解:根据函数图象可知:抛物线的对称轴为x=1,抛物线与x轴一个交点的坐标为(1,0),由抛物线的对称性可知:抛物线与x轴的另一个交点坐标为(3,0)y0,x3或x1故答案为:x3或x1【点评】本题主要考查的是二次函数与不等式的关系,根据函数图象确定出抛物线与x轴两个交点的坐标是解题的关键16如图,ABC是边长为a的等边三角形,将三角板的30角的顶点与A重合,三角板30角的两边与BC交于D、E两点,则DE长度的取值范围是(23)aDEa【考点】相似三角形的判定与性质;等边三角形的性质【分析】当B、D重合或C、E重合时DE长度最大,解直角三角形即可求得DE的最大值;当BAD=CAE=15时,DE长度最小,作AFBC,且AF=AB,连接DF、CF,证明ABDADF,则B=AFD,BD=DF,然后证明ABHDFH,根据相似三角形的性质求得DH=a,即可求得DE的最小值【解答】解:当B、D重合或C、E重合时DE长度最大,如图1,BAE=30,AEB=90,DE=AB=a,当BAD=CAE=15时,DE长度最小,如图2,作AFBC,且AF=AB,连接DF、CF,AFBC,BAF=CAF=30,BAD=CAE=15,DAH=EAH=15,BAD=DAH,在ADB和ADF中,ABDADF,B=AFD,BD=DF,AHB=DHF=90,ABHDFH,AB:AH=DF:DH,=,=,DH=,其中BD+DH=a、AH=a,DH=aDE=(23)a,故DE长度的取值范围是(23)aDEa【点评】本题考查了等边三角形的性质,全等三角形的判定和性质以及相似三角形的和性质,分类讨论思想的运用是解题的关键三、解答题(共8小题,共72分)17解方程:x2+x2=0【考点】解一元二次方程-因式分解法【专题】计算题【分析】方程左边利用十字相乘法分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解【解答】解:分解因式得:(x1)(x+2)=0,可得x1=0或x+2=0,解得:x1=1,x2=2【点评】此题考查了解一元二次方程因式分解法,熟练掌握因式分解的解法是解本题的关键18已知抛物线的顶点坐标是(3,1),与y轴的交点是(0,4),求这个二次函数的解析式【考点】待定系数法求二次函数解析式【分析】根据二次函数顶点坐标设出顶点形式,把(0,4)代入求出a的值,即可确定出解析式【解答】解:设抛物线解析式为y=a(x3)21,把(0,4)代入得:4=9a1,即a=,则抛物线解析式为y=(x3)21【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键19已知x1、x2是方程x23x5=0的两实数根(1)求x1+x2,x1x2的值;(2)求2x12+6x22015的值【考点】根与系数的关系【分析】(1)利用一元二次方程根与系数的关系,求出方程的两根之和和两根之积即可;(2)利用一元二次方程根与系数的关系,求出方程的两根之和和两根之积,再将代数式加以整理代入数值即可【解答】解:(1)x1、x2是方程x23x5=0的两实数根,x1+x2=3,x1x2=5,;(2)x1、x2是方程x23x5=0的两实数根,x123x15=0,x12=3x1+5,2x12+6x22015=2(3x1+5)+6x22015=6(x1+x2)2015=1987【点评】本题考查了一元二次方程根与系数的关系和一元二次方程解的意义,遇到此类求代数式求值问题,应对代数式进行适当的变形,使其含有两根和、两根积的形式,再求得其值20如图所示,ABC与点O在1010的网格中的位置如图所示(1)画出ABC绕点O逆时针旋转90后的图形;(2)画出ABC绕点O逆时针旋转180后的图形;(2)若M能盖住ABC,则M的半径最小值为【考点】作图-旋转变换;三角形的外接圆与外心【专题】作图题【分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点A、B、C,于是可得到ABC;(2)利用网格特点和中心对称的性质画出点A、B、C的对应点A、B、C,于是可得到ABC;(3)ABC的外接圆是能盖住ABC得最小圆,画AB和AC的垂中平分线,两垂直平分线的交点为M,则点M为ABC的外接圆的圆心,然后利用勾股定理计算出MA即可【解答】解:(1)如图,ABC为所作;(2)如图,ABC为所求;(3)如图,点M为ABC的外接圆的圆心,此时M是能盖住ABC的最小的圆,M的半径为=故答案为【点评】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形也考查了三角形的外心21如图,在O中,半径OA垂直于弦BC,垂足为E,点D在CA的延长线上,若DAB+AOB=60(1)求AOB的度数;(2)若AE=1,求BC的长【考点】圆周角定理;勾股定理;垂径定理【分析】(1)连接OC,根据垂径定理和三角形的外角的性质证明DAB=AOB,求出AOB的度数;(2)根据直角三角形的性质得到BE=OB,设O的半径为r,根据勾股定理求出r,根据等边三角形的性质得到答案【解答】解:(1)连接OC,OABC,OC=OB,AOC=AOB,ACO=ABO,DAO=ACO+AOC=OAB+DAB,ACO=OAB,DAB=AOC,DAB=AOB,又DAB+AOB=60,AOB=30;(2)AOB=30,BE=OB,设O的半径为r,则BE=r,OE=r1,由勾股定理得,r2=(r)2+(r1)2,解得r=4,OB=OC,BOC=2AOB=60,BC=r=4【点评】本题考查的是勾股定理、圆周角定理和垂径定理的应用,正确作出辅助线、理解垂直于弦的直径平分这条弦、等边对等角是解题的关键22飞机着陆后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是:S=60t1.5t2(1)直接指出飞机着陆时的速度;(2)直接指出t的取值范围;(3)画出函数S的图象并指出飞机着陆后滑行多远才能停下来?【考点】二次函数的应用【分析】(1)直接由函数解析式得出答案即可;(2)由于飞机着陆,不会倒着跑,所以当S取得最大值时,t也取得最大值,求得t的取值范围即可;(3)利用配方法求得函数的最值,也就是飞机着陆后滑行的最远距离【解答】解:(1)飞机着陆时的速度V=60;(2)当S取得最大值时,飞机停下来,则S=60t1.5t2=1.5(x20)2+600,此时t=20因此t的取值范围是0t20;(3)如图,S=60t1.5t2=1.5(x20)2+600飞机着陆后滑行600米才能停下来【点评】此题考查二次函数的实际运用,运用二次函数求最值问题常用公式法或配方法是解题关键23如图,ABC是边长为6cm的等边三角形,点D从B点出发沿BA方向在线段BA上以a cm/s速度运动,与此同时,点E从线段BC的某个端点出发,以b cm/s速度在线段BC上运动,当D到达A点后,D、E运动停止,运动时间为t(秒)(1)如图1,若a=b=1,点E从C出发沿CB方向运动,连AE、CD,AE、CD交于F,连BF当0t6时:求AFC的度数;求的值;(2)如图2,若a=1,b=2,点E从B点出发沿BC方向运动,E点到达C点后再沿CB方向运动当t3时,连DE,以DE为边作等边DEM,使M、B在DE两侧,求M点所经历的路径长【考点】全等三角形的判定与性质;等边三角形的性质;勾股定理;特殊角的三角函数值【专题】压轴题【分析】(1)如图1,由题可得BD=CE=t,易证BDCCEA,则有BCD=CAE,根据三角形外角的性质可求得EFC=60,即可得到AFC=120;延长FD到G,使得FG=FA,连接GA、GB,过点B作BHFG于H,如图2,易证FAG是等边三角形,结合ABC是等边三角形可证到AGBAFC,则有GB=FC,AGB=AFC=120,从而可得BGF=60设AF=x,FC=y,则有FG=AF=x,BG=CF=y在RtBHG中运用三角函数可得BH=y,GH=y,从而有FH=xy在RtBHF中根据勾股定理可得BF2=x2xy+y2,代入所求代数式就可解决问题;(2)过点E作ENAB于N,连接MC,如图3,由题可得BEN=30,BD=t,CE=2t6,从而有BE=122t,BN=6t,进而可得DN=EC由DEM是等边三角形可得DE=EM,DEM=60,从而可得NDE=MEC,进而可证到DNEECM,则有DNE=ECM=90,故M点运动的路径为过点C垂直于BC的一条线段然后只需确定点M的始点和终点位置,就可解决问题【解答】解:(1)如图1,由题可得BD=CE=tABC是等边三角形,BC=AC,B=ECA=60在BDC和CEA中,BDCCEA,BCD=CAE,EFC=CAE+ACF=BCD+ACF=ACB=60,AFC=120;延长FD到G,使得FG=FA,连接GA、GB,过点B作BHFG于H,如图2,AFG=180120=60,FG=FA,FAG是等边三角形,AG=AF=FG,AGF=GAF=60ABC是等边三角形,AB=AC,BAC=60,GAF=BAC,GAB=FAC在AGB和AFC中,AGBAFC,GB=FC,AGB=AFC=120,BGF=60设AF=x,FC=y,则有FG=AF=x,BG=CF=y在RtBHG中,BH=BGsinBGH=BGsin60=y,GH=BGcosBGH=BGcos60=y,FH=FGGH=xy在RtBHF中,BF2=BH2+FH2=(y)2+(xy)2=x2xy+y2=1;(2)过点E作ENAB于N,连接MC,如图3,由题可得:BEN=30,BD=1t=t,CE=2(t3)=2t6BE=6(2t6)=122t,BN=BEcosB=BE=6t,DN=t(6t)=2t6,DN=ECDEM是等边三角形,DE=EM,DEM=60NDE+NED=90,NED+ME
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东深圳九州光电子技术有限公司招聘生产主管等2人模拟试卷及答案详解(必刷)
- 2025年甘肃省庆阳市正宁县三嘉乡选聘返乡能人、致富带头人到村任职(兼职)考前自测高频考点模拟试题及答案详解1套
- 2025国网冀北电力有限公司第二批高校毕业生录用人选的模拟试卷附答案详解(模拟题)
- 2025甘肃省兰州市榆中县中医医院春季招聘15人考前自测高频考点模拟试题及答案详解(新)
- 2025年福建省厦门市公安局局属单位公开招聘4人模拟试卷完整答案详解
- 2025安徽合肥滨投文化创意发展有限公司招聘3人考前自测高频考点模拟试题及答案详解(必刷)
- 2025安徽宣城市旌德县兴业融资担保有限公司招聘3人考前自测高频考点模拟试题带答案详解
- 2025湖南怀化市靖州县政务服务中心见习人员招聘模拟试卷及答案详解(名校卷)
- 2025年聊城科技职业学院(筹)公开招聘工作人员(60人)考前自测高频考点模拟试题带答案详解
- 2025安徽远景人力资源管理有限公司驾驶员岗位招聘5人笔试题库历年考点版附带答案详解
- 国家基层高血压防治管理指南(2025版)
- 2025年B2B企业生成式引擎优化(GEO)实战指南
- 2025年宁波辅警考试题库(附答案)
- 2025年考研护理综合全程真题及答案
- 电力市场风险管理办法
- 小学道德与法治五年级上册《烟酒有危害》教学课件
- 2025四川能投合江电力有限公司员工招聘11人笔试参考题库附答案解析
- 测漏培训课件
- 2025年军事理论知识竞赛题库及答案
- 《生成式人工智能基础与应用》高职AIGC应用基础课程全套教学课件
- 环评管理培训
评论
0/150
提交评论