




已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七章计数原理 概率与统计 第46讲分类和分步计数原理与排列 组合的基本问题 学习目标 1 理解分类加法计数原理和分步乘法计数原理 会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题 2 理解排列 组合的概念 能利用计数原理推导排列数公式 组合数公式 能解决简单的实际问题 基础检测 1 现有4名同学去听同时进行的3个课外知识讲座 每名同学可自由选择其中的一个讲座 不同选法有 a 81种b 64种c 48种d 24种 a 解析 每个同学都有3种选择 所以不同选法共有34 81 种 故选a 2 如图所示为一电路图 从a到b不同的线路可通电共有 a 4条b 6条c 8条d 10条 c 解析 按上 中 下三条线路可分为三类 上线路中有3条 中线路中有1条 下线路中有2 2 4条 根据分类加法计数原理 共有3 1 4 8 条 故选c 3 若从1 2 3 9这9个数中同时取4个不同的数 其和为奇数 则不同的取法共有 a 66种b 63种c 61种d 60种 d 解析 从1 2 3 9这9个数中同时取4个不同的数 其和为奇数的取法分为两类 第一类取1个奇数 3个偶数 共有c51c43 20种取法 第二类是取3个奇数 1个偶数 共有c53c41 40种取法 故不同的取法共有60种 选d 4 有5名男生和3名女生 从中选出5人分别担任语文 数学 英语 物理 化学学科的课代表 若某女生必须担任语文课代表 则不同的选法共有 种 用数字作答 840 解析 由题意知 从剩余7人中选出4人担任4个学科课代表 共有a74 840种 知识要点 1 分类加法计数原理完成一件事件有n 不同的方案 在第一类方案中有m1种不同的方法 在第二类方案中有m2种不同的方法 在第n类方案中有mn种不同的方法 则完成这件事情 共有n 种不同的方法 类 m1 m2 m3 mn 2 分步乘法计数原理完成一件事情需要分成n个不同的 完成第一步有m1种不同的方法 完成第二步有m2种不同的方法 完成第n步有mn种不同的方法 那么完成这件事情共有n 种不同的方法 步骤 m1 m2 mn 3 分类加法计数原理与分步乘法计数原理的区别与联系分类加法计数原理与分步乘法计数原理 都涉及的不同方法的种数 它们的区别在于 分类加法计数原理与有关 各种方法 用其中的任一种方法都可以完成这件事 分步乘法计数原理与有关 各个步骤 只有各个步骤都完成了 这件事才算完成 完成一件事情 分类 相互独立 分步 相互依存 4 排列 1 排列的定义 从n个不同的元素中任取m m n 个元素 叫做从n个不同的元素中取出m个元素的一个排列 2 排列数的定义 从n个不同的元素中任取m m n 个元素的的个数 叫做从n个不同的元素中取出m个元素的排列数 用符号anm表示 3 排列数公式 anm 这里n m n 并且m n 按照一定的顺序排成一列 所有排列 n n 1 n 2 n m 1 一个排列 n 1 并成一组 所有组合 1 cnn m cnm cnm 1 512 28 点评 理解排列数和组合数的意义 灵活应用组合数的性质是解决有关排列数和组合数方程或恒等式问题的关键 c 解析 可分三步 第一步 填a b方格的数字 填入a方格的数字大于b方格中的数字有6种方式 若方格a填入2 则方格b只能填入1 若方格a填入3 则方格b只能填入1或2 若方格a填入4 则方格b只能填入1或2或3 第二步 填方格c的数字 有4种不同的填法 第三步 填方格d的数字 有4种不同的填法 由分步计数原理得 不同的填法总数为6 4 4 96 2 某出版社的7名工人中 有3人只会排版 2人只会印刷 还有2人既会排版又会印刷 现从7人中安排2人排版 2人印刷 有几种不同的安排方法 解析 第一类 既会排版又会印刷的2人全不被选出 即从只会排版的3人中选2人 有3种选法 只会印刷的2人全被选出 有1种选法 由分步计数原理知共有3 1 3种选法 第二类 既会排版又会印刷的2人中被选出1人 有2种选法 若此人去排版 则再从会排版的3人中选1人 有3种选法 只会印刷的2人全被选出 有1种选法 由分步计数原理知共有2 3 1 6种选法 若此人去印刷 则再从会印刷的2人中选1人 有2种选法 从会排版的3人中选2人 有3种选法 由分步计数原理知共有2 3 2 12种选法 再由分类计数原理知共有6 12 18种选法 第三类 既会排版又会印刷的2人全被选出 同理共有16种选法 所以共有3 18 16 37种选法 点评 应用分类加法原理的题时 分类标准要明确 分类时应不重不漏 应用分步计数原理解题时 要合理分步 各步互不干扰 难度较大 解析 1 只需一名队长参加有c21c84 140 种 2 队长至少有一人参加 有两种情况 只有一名队长参加有c21c84种 两名队长都参加有c22c83种 所以共有c21c84 c22c83 196 种 3 解法一 可分类考虑 即 1男4女 2男3女 3男2女 4男1女 故有 c41c64 c42c63 c43c62 c44c61 246 种 解法二 间接法 10人中取5人的组合为c105 其中全部是女演员的有c65 所以符合题意的有c105 c65 252 6 246 种 点评 问题实质是具备 无序性 的组合问题 此类问题应用组合知识求解 解析 1 利用元素分析法 甲为特殊元素 故先安排甲 左 右 中共三个位置可供甲选择 有a31种 其余6人全排列 有a66种 由乘法原理得a31a66 2160种 2 位置分析法 先排最左边 除去甲外 有a61种 余下的6个位置全排有a66种 但应剔除乙在最右边的排法数a51a55种 则符合条件的排法共有a61a66 a51a55 3720种 3 捆绑法 将男生看成一个整体 进行全排列 再与其他元素进行全排列 共有a33a55 720种 4 插空法 先排好男生 然后将女生插入其中的四个空位 共有a33a44 144种 5 插空法 先排女生 然后在空位中插入男生 共有a44a53 1440种 点评 问题实质是具备 有序性 的排列问题 有序性的检验方法是 将其中元素互换而结果变化为有序问题 此类问题应用排列知识求解 b 解析 分0个相同 1个相同 2个相同进行讨论 若0个相同 共有1个 若1个相同 共有c41 4个 若2个相同 共有c42 6个 因此共有1 4 6 11个 故选b 点评 本小题主要考查分类计数原理及分类讨论思想 1 计数重复或遗漏的原因在于分类 分步的标准不清 一般来说 应检查分类是否是按元素的性质进行 分步是否是按事件发生的过程进行 2 排列与组合的定义相近 它们的区别在于是否与顺序有关 处理排列组合问题的一般思想是先选元素 组合 后排列 按元素的性质 分类 和按事件发生的连续过程 分步 始终是处理排列组合问题的基本方法和原理 要注意积累分类与分步的基本技能 3 分清问题与元素顺序有关还是无关 是区分排列组合问题的原则 搞清解决问题的方法需分步还是需分类 是统计排列与组合问题总数的依据 1 2013福建 满足a b 1 0 1 2 且关于x的方程ax2 2x b 0有实数解的有序数对 a b 的个数为 a 14b 13c 12d 10 b 命题立意 本题考查分类加法计数原理 属中档题 2 2013四川 从1 3 5 7 9这五个数中 每次取出两个不同的数分别为a b 共可得到lga lgb的不同值的个数是 a 9b 10c 18d 20 c 解析 从1 3 5 7 9中 每次取出两个不同的数作为a b可以得到不同的差式lga lgb共计a52 20个 但其中lg9 lg3 lg3 lg1 lg3 lg9 lg1 lg3 故不同的值只有18个 命题立意 本题考查排列知识 考查思维的全面性 属中档题 1 有四名同学同时参加了学校的100m 800m 1500m三项跑步比赛 则获得冠军 无并列名次 的可能性有 a 43种b 34种c 12种d 24种 a 解析 第一步 100m冠军有4种可能 第二步 800m冠军也有4种可能 第三步 1500m冠军有4种可能 根据分步计数原理 共有4 4 4 43种可能 故选a 2 从6名志愿者中选出4名分别从事翻译 导游 导购 保洁四项不同的工作 则不同的选派方案有 a 180种b 360种c 15种d 30种 b 解析 a64 6 5 4 3 360 3 某校开设a类选修课3门 b类选修课4门 一位同学从中共选3门 若要求两类课程中各至少选一门 则不同选法共有 a 30种b 35种c 42种d 48种 a 解析 从7门课程中选3门的总数为c73 35种 其中不满足条件的选法数为c33 c43 5种 所以满足题目条件的选法数为35 5 30种 故选a 4 将字母a a b b c c排成三行两列 要求每行的字母互不相同 每列的字母也互不相同 则不同的排列方法共有 a 12种b 18种c 24种d 36种 a 解析 利用分步乘法计数原理求解 先排第一列 因为每列的字母互不相同 因此共有a33种不同的排法 再排第二列 其中第二列第一行的字母共有a21种不同的排法 第二列第二 三行的字母只有1种排法 因此共有a33 a21 1 12 种 不同的排列方法 5 两人进行乒乓球比赛 先赢3局者获胜 决出胜负为止 则所有可能出现的情形 各人输赢局次的不同视为不同情形 共有 a 10种b 15种c 20种d 30种 c 解析 利用分类讨论法求解 由题意知比赛场数至少为3场 至多为5场 当为3场时 情况为甲或乙连赢3场 共2种 当为4场时 若甲赢 则前3场中甲赢2场 最后一场甲赢 共有c32 3种情况 同理 若乙赢也有3种情况 共有6种情况 当为5场时 前4场甲 乙各赢2场 最后1场胜出的人赢 共有2c42 12种情况 由上综合知 共有20种情况 6 在某跳水运动员的一项跳水实验中 先后要完成5个不同的动作 其中动作p只能出现在第一步或最后一步 动作q和r必须相邻 则动作顺序的编排方法共有 种 24 解析 p动作的排法有a21种 捆绑动作r q的排法有a22种 r q与余下两个动作有a33种排法 故共有编排方法n a21a22a33 24种 7 2名男生和3名女生共5名同学站成一排 若男生甲不站两端 3名女生中有且只有两名女生相邻 则不同排法的种数是 48 解析 从3名女生中任取2人 捆 在一起记作a a共有c32a22 6种不同排法 剩下一名女生记作b 两名男生分别记作甲 乙 为使男生甲不在两端可分三类情况 第一类 女生a b在两端 男生甲 乙在中间 共有6a22a22 24种排法 第二类 捆绑 a和男生乙在两端 则中间女生b和男生甲只有一种排法 此时共有6a22 12种排法 第三类 女生b和男生乙在两端 同样中间 捆绑 a和男生甲也只有一种排法 此时共有6a22 12种排法 三类之和为24 12 12 48种 8 有一个圆形区域被直径分成6块 如图所示 在每一块区域内种植植物 相邻的两块区域种植不同的植物 现有4种不同的植物供选择 一共有多少种不同的种法 解析 分三类考虑 第一类 a c e种同一种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区与医院签订合同协议
- 汽油发电机购买合同范本
- 浙江网上申请就业协议书
- 终止车辆承包合同协议书
- 高校县中托管帮扶协议书
- 法律合同解除协议书范本
- 私人财产转移协议书范本
- 瓷砖店铺转让合同协议书
- 社区矫正基地服务协议书
- 洁净室车间出租合同范本
- 2025-2030中国包装印刷行业现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 高职大学生心里健康教育(第2版)-课程思政案例(结合知识点)
- 2025年大学食堂食材采购协议
- Drager呼吸机使用指南
- 办公用品、易耗品供货服务方案投标方案文件
- 餐厨垃圾处理可行性研究报告
- 静脉导管常见并发症临床护理实践指南(上)
- 《妇产科学绪论》课件
- 酒店考勤培训
- 非煤矿山矿石运输车辆安全协议书
- 东北林业大学20-21高数A2期末考试含答案
评论
0/150
提交评论