




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
超声波测距仪软件设计毕业论文目 录摘要.4Abstract.5第一章 绪论. .61.1 课题背景、目的和意义.61.2 课题主要内容.6第二章 声波测距原 82. 1 超声波简介.82.2 超声波测距原理 .8第三章 方案论证.103. 1 设计思路.103. 2 系统结构设计.11第四章 主要元件介绍.124. 1 单片机AT89S51.124. 2 HR-SR04超声波块.14第五章 系统硬件电路设计.165. 1 HC-SR04发射与接收路.175. 2 显示路.175. 3 复位路.185. 4 时钟路. .18第六章 系统软件设计196. 1 主程序计.196. 2 中断处理序.216. 3 距离计算及显示模块序.24第七章硬件组装及性能试.26致 谢.28参 考 文 献.29附录1 超声波测距仪整体电路图.30附录2 程序清单.31摘 要本设计是以单片机技术为基础,实现对前方物体距离的测量。根据超声波指向性强,能量消耗慢,在介质中传播距离远的特点,利用超生波传感器对前方物体进行感应,经过单片机中的程序对超声波传感器发射和接收的超声波信号进行分析和计算处理,最后将处理结果在数码管上显示。STC89C52单片机的超声波测距系统,此系统根据超声波在空气中传播反射原理,把超声波传感器作为接口部件,利用超声波在空气中传播的时间差来测量距离,设计了一套超声波检测系统。该系统设计主要由主控制器模块、超声波发射模块、超声波接收模块和显示模块等四个基本模块构成,用接收部分接收超声波。本设计利用两个中断,在发射信号时,打开定时器中断0和外部中断0使定时器计时,接收到发射超声波信号时,外部中断0关闭中断,这时定时器中断0计录的时间就为超声波传播经过测距仪到前方物体的来回时间。利用公式S=TV2(V为超生波传播速度,本设计设定值340m/s),经过单片机处理得到距离值S并且通过数码管显示出来。关键词:单片机STC89C52,HC-SR04超声波传感器,数码管AbstractThis design is based on single chip microcomputer technology, realizes the measurement of the front object distance. According to ultrasonic directionality is strong, energy consumption slow, the characteristics of the propagation distance in the medium, using super living wave sensor to induction of in front of the object, through single chip microcomputer in application of ultrasonic transducer transmitting and receiving of ultrasonic signal analysis and processing, finally the results on the digital tube display. STC89C52 MCU ultrasonic ranging system, the system according to the principle of ultrasonic reflection in the air, the ultrasound sensor as interface components, using the ultrasonic time difference to measure distance in air, a set of ultrasonic detection system is designed. The system design is mainly composed of main controller module, ultrasonic launch module, ultrasonic receiving module and display module and so on four basic modules, with a receiving part receiving ultrasound. This design USES two interrupts, when transmitting, open the timer interrupt 0 timer and external interrupt 0 timer, receives the side of launch ultrasonic wave signal, the external interrupt 0 closed interrupted, then the timer interrupt 0 meter to record the time for the ultrasonic propagation through the range finder to the object in front of the time back and forth. Using the formula of S = T * V / 2 (V to super living wave propagation speed, the design value of 340 m/S), get distance S after a single-chip processing and through digital tube display.Keyword: microcontroller STC89C52, HC - SR04 ultrasonic sensors, digital tube第一章 绪论超声波具有指向性强,能量消耗缓慢,传播距离较远等优点,所以,在利用传感器技术和自动控制技术相结合的测距方案中,超声波测距是目前应用最普遍的一种,它广泛应用于防盗、倒车雷达、水位测量、建筑施工工地以及一些工业现场。本课题详细介绍了超声波传感器的原理和特性,以及Atmel 公司的AT89C51 单片机的性能和特点,并在分析了超声波测距的原理的基础上,指出了设计测距系统的思路和所需考虑的问题,给出了以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法。该系统电路设计合理、工作稳定、性能良好、检测速度快、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求。1.1 课题背景、目的和意义传感器技术是现代信息技术的主要内容之一,信息技术主要包括计算机技术、通信技术和传感器技术,计算机技术相当于人的大脑,通信相当于人的神经,而传感器就相当于人的感官。比如温度传感器、光电传感器、湿度传感器、超声波传感器、红外线传感器、压力传感器等等,其中超声波传感器在测量方面有着广泛、普遍的应用。利用单片机控制超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且测量精度较高。超声波测距系统主要应用于汽车的倒车雷达、机器人自动避障行走、建筑施工工地以及一些工业现场例如:液位、井深、管道长度等场合。因此研究超声波测距系统的原理有着很大的现实意义。对本课题的研究与设计,还能进一步提高自己的电路设计水平,深入对单片机的理解和应用。1.2 课题主要内容本课题研究的测距系统就是用单片机控制的。通过超声波发射器向某一方向发射超声波,单片机在发射时刻同时开始计时,超声波在空气中传播,途中碰到障碍物就立即反射回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为V,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离。本系统利用单片机控制超声波的发射和对超声波自发射至接收往返时间的计时。电路的输出端接单片机的外部中断源输入口。系统定时发射超声波,在启动发射电路的同时启动单片机内部的定时器,利用定时器的计数功能记录超声波发射的时间和收到反射波的时间。当收到超声波的反射波时,接收电路输出端产生一个负跳变,在单片机的外部中断源输入口产生一个中断请求信号,单片机响应外部中断请求执行外部中断服务子程序,读取时间差,计算距离,结果输出给LED显示。第二章 超声波测距原理2.1超声波简介我们知道,当物体振动时会发出声音。科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为2020000赫兹。当声波的振动频率大于20000赫兹或小于20赫兹时,我们便听不见了。因此,我们把频率高于20000赫兹的声波称为“超声波”。通常用于医学诊断的超声波频率为15兆赫。超声波具有方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远等特点。可用于测距,测速,清洗,焊接,碎石等。在医学,军事,工业,农业上有明显的作用。理论研究表明,在振幅相同的条件下,一个物体振动的能量与振动频率成正比,超声波在介质中传播时,介质质点振动的频率很高,因而能量很大。在我国北方干燥的冬季,如果把超声波通入水罐中,剧烈的振动会使罐中的水破碎成许多小雾滴,再用小风扇把雾滴吹入室内,就可以增加室内空气湿度。这就是超声波加湿器的原理。对于咽喉炎、气管炎等疾病,药品很难血流到打患病的部位。利用加湿器的原理,把药液雾化,让病人吸入,能够疗效。利用超声波巨大的能量还可以使人体内的结石做剧烈的受迫振动而破碎。2.2超声波测距原理超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停 止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2最常用的超声测距的方法是回声探测法,超声波发射器向某一方向发射超声波,在发射时刻的同时计数器开始计时,超声波在空气中传播,途中碰到障碍物面阻挡就立即反射回来,超声波接收器收到反射回的超声波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物面的距离s,即:s=340t/2。 由于超声波也是一种声波,其声速V与温度有关,表2-1 列出了几种不同温度下的波速。表2-1 声速与温度的关系温度()3020100102030100声速(m/s)313319325323338344349386声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的基本原理。如图2-2所示: 超声波发射 障碍物 S H 超声波接收图2-1 超声波的测距原理 (2-1) (2-2)式中:L-两探头之间中心距离的一半.又知道超声波传播的距离为: (2-3)式中:v超声波在介质中的传播速度; t超声波从发射到接收所需要的时间.将(24)、(25)代入(2-3)中得: (2-4)其中,超声波的传播速度v在一定的温度下是一个常数(例如在温度T=30度时,V=349m/s);当需要测量的距离H远远大于L时,则(34)变为: (2-5) 所以,只要需要测量出超声波传播的时间t,就可以得出测量的距离H。 第三章 方案论证3.1 设计思路 测量距离方法有很多种,短距离可以用尺,远距离有激光测距等,超声波测距适用于高精度中长距离测量。因为超声波在标准空气中传播速度为340米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统测量精度理论上可以达到毫米级。 目前比较普遍的测距的原理:通过发射具有特征频率的超声波对被摄目标的探测,通过发射出特征频率的超声波和反射回接受到特征频率的超声波所用的时间,换算出距离,如超声波液位物位传感器,超声波探头,适合需要非接触测量场合,超声波测厚,超声波汽车测距告警装置等。 由于超声波指向性强,能量消耗缓慢,在介质中传播距离远,因而超声波可以用于距离测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到要求。由于超声波易于定向发射、方向性好、强度易控制、与被测量物体不需要直接接触的优点。目前超声波测距已得到广泛应用,国内一般使用专用集成电路根据超声波测距原理设计各种测距仪器,但是专用集成电路的成本较高、功能单一。而以单片机为核心的测距仪器可以实现预置、多端口检测、显示等多种功能,并且成本低、精度高、操作简单、工作稳定、可靠。以8051为内核的单片机系列,其硬件结构具有功能部件齐全、功能强等特点。尤其值得一提的是,出8位CPU外,还具备一个很强的位处理器,它实际上是一个完整的位微计算机,即包含完整的位CPU,位RAM、ROM(EPROM),位寻址寄存器、I/O口和指令集。所以,8051是双CPU的单片机。位处理在开关决策、逻辑电路仿真、过程测控等方面极为有效;而8位处理则在数据采集和处理等方面具有明显长处。根据设计要求并综合各方面因素,可以采用AT89C51单片机作为主控制器,它控制发射超声波模块发射触发脉冲的开始时间及脉宽,响应回波时刻并测量、计数发射至往返的时间差。利用软件产生超声波信号,通过输出引脚输入至驱动器,经驱动器驱动后推动探头产生超声波;超声波信号的接收采用74LS04电路进行放大后的信号进行频率监视和控制。一旦探头接到回波,若接收到的信号频率等于振荡器的固有频率,则其输出引脚的电平将从“1”变为“0”(此时锁相环已进入锁定状态),这种电平变化可以作为单片机对接收探头的接收情况进行实时监控。可对测得数据优化处理;AT89C51还控制显示电路,用LED数字显示。 3.2 系统结构设计 超声波测距仪系统结构如图3.1所示。它主要由单片机、超声波发射及接收电路、超声波传感器、LED显示电路电路组成。系统主要功能包括:1) 超声波的发射、接收,并根据计时时间计算测量距离;2) LED显示器显示距离;超声波接收 单片机控制器超声波发送LED显示扫描驱动图3-1 超声波测距器系统设计框图 第四章 主要元器件4.1 单片机AT89S51单片机即单片微型计算机SCMC(Single Chip Micro Computer)。它把构成一台计算机的主要功能部、器件,如CPU(进行运算、控制)、RAM(数据存储)、ROM(程序存储)、输入/输出设备(例如:串行口、并行输出口等)、中断系统、定时/计数器等集中在一块芯CPU(进行运算、控制)、RAM(数据存储)、ROM(程序存储)、输入/输出设备(例如:串行口、并行输出口等)制功能,所以又称为微控制器MCU(Microcontroller Unit)。相对于普通微机,单片机的体积要小得多,一般嵌入到其他仪器设备里,实现自动检测与控制,因此也称为嵌入式微控制器EMCU(Embedded Microcontroller Unit)。本设计的MCU采用的是DIP(Dual In-line Package塑料双列直插式)封装的AT89C51高性能8位单片机。AT89C51是一个低电压,高性能CMOS 8位单片机,片内含4k bytes的可反复擦写的Flash只读程序存储器和128 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,内置功能强大的微型计算机的AT89C51提供了高性价比的解决方案。AT89C51是一个低功耗高性能单片机,40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,2个16位可编程定时计数器,2个全双工串行通信口,AT89C51可以按照常规方法进行编程,也可以在线编程。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。其引脚图如右图4.1。图4-1 AT89S51的引脚图AT89C51的引脚功能有: 1) 主电源引脚VSS第20脚,电路接地电平。VCC第40脚,正常运行和编程校验+5V电源。2) 时钟源XTAL1第19脚,一般外接晶振的一个引脚,它是片内反相放大器的输入端口。当直接采用外部信号时,此引脚应接地。XTAL1第18脚,接外部晶振的另一个引脚,它是片内反相放大器的输出端口。当采用外部振荡信号源泉时,此引脚为外部振荡信号的输入端口,与信号源相连接。3) 控制、选通或复用RST/VPD第9脚,RESET复位信号输入端口。当单片机正常工作时,由该引脚输入脉宽为2个以上机器周期的高电平复位信号到单片机。在VCC掉电期间,此引脚(即VPD)可接通备用电源,以保持片内RAM信息不受破坏。第30脚,输出允许地址锁存信号。当单片机访问外部存储器时,ALE信号的负跳变将P0口上的低8位地址送入锁存器。在非访问外部存储器期间,ALE仍以1/6振荡频率固定不变地输出,因此它可对个输出或用于定时目的。要注意的是:每当访问外部存储器时将跳过一个ALE脉冲。为第二功能,当对片内程序存储器编程写入时,此引脚作为编程脉冲输入端。第29脚,访问外部程序存储器选能信,低电平有效。当AT89C51由外部程序存储器取指令(或数据)时,每个机器周期两次有效,即输出两个脉冲。在此期间,当访问外部数据存储器,这两次有效的 信号不出现。:外部访问允许。欲使CPU公访问外部程序存储器(地址0000H-FFFFH),端必须保持低电平(接地)。需注意的是:如果加密位LBI被编程,复位时内部会锁存端状态。Flash存储器编程时,该引脚加上+12V的编程允许电源VPP,当然这必须是该器件是使用12V编程电压VPP。4) 多功能I/O端口P0口第3239脚,8位漏极开路双向I/O端口。作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端用。在访问数据存储器或程序存储器时,这组口线分时转换地址和数据总线复用,在访问期间激活内部上拉电阻。P1口第18脚,具有内部上拉电路的8位准双向I/O端口。在对片内程序存储器(EPROM型)进行程序编程和校验时,用做低8位地址总线。P2口第2128脚,具有内部上拉电路的8位准双向I/O端口。当单片机访问存储器时,用做高8位地址总线;在对片内程序存储器(EPROM型)进行程序编程和校验时,亦用做高8位地址总线。P3口第1017脚,具有内部上拉电路的8位准双向I/O端口。它还提供特殊的第二变异功能。它的每一位均可独立定义为第一功能的I/O口或第二变异功能。第二变异功能的具体含义如表4.1:表4.1 P3口的第二变异功能端口引脚第二功能P3.0RXD (串行输入口)P3.1TXD (串行输出口)P3.2 (外中断0)P3.3 (外中断1)P3.4T0 (定时/计数器0)P3.5T1 (定时/计数器1)P3.6 (外部数据存储器写选通)P3.7 (外部数据存储器读选通)4.2 HR-SR04超声波集成模块1 产品特点: HC-SR04 超声波测距模块可提供 2cm-400cm 的非接触式距离感测功能, 测距精度可达高到 3mm;模块包括超声波发射器、接收器与控制电路。 基本工作原理:(1)采用 IO 口 TRIG 触发测距,给至少 10us 的高电平信号; (2)模块自动发送 8 个 40khz 的方波,自动检测是否有信号返回; (3)有信号返回,通过 IO 口 ECHO 输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。测试距离=(高电平时间*声速(340M/S)/2;2 实物图: 图4-2 HR-SR04超声波集成模块实物图如右图接线,VCC 供5V 电源,GND 为地 线,TRIG 触发控制 信号输入,ECHO 回 响 信 号 输 出 等 四 支 线。3 电气参数:电气参数HC-SR04 超声波模块工作电压DC 5 V工作电流15mA工作频率40Hz最远射程4m最近射程2cm测量角度15 度输入触发信号10uS 的 TTL 脉冲输出回响信号输出 TTL 电平信号,与射程成比例规格尺寸45*20*15mm4 超声波时序图: 图4-3 超声波时序图 超声波时序图 以上时序图表明你只需要提供一个 10uS 以上脉冲触发信号,该模块内部将发出 8 个 40kHz 周期电平并检测回波。一旦检测到有回波信号则输出回响信号,回响信号的脉冲宽度与所测的距离成正比。由此通过发射信号到收到的回响信号时间间隔可以计算得到距离。公式:uS/58=厘米或者 uS/148=英寸;或是:距离=高电平时间*声速(340M/S)/2;建议测量周期为 60ms 以上,以防止发射信号对回响信号的影响。5 实物规格:图4-4 实物规格第五章 系统硬件电路设计5.1 HC-SR04发射与接收电路采用 IO 口 TRIG 触发测距,给至少 10us 的高电平信号;模块自动发送 8 个 40khz 的方波,自动检测是否有信号返回; 有信号返回,通过 IO 口 ECHO 输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。 图5-1 HC-SR04发射与接收电路5.2 显示电路 显示电路如图,四位LED组成动态扫描电路,由AT89C51的P1口输出。动态扫描时,由P2口控制LED的当前显示位。当距离测量结束并调用显示程序,就会显示距离大小,显示两位小数。 图5-2 显示电路5.3 复位电路单片机在RESET端加一个大于20ms正脉冲即可实现复位,上电复位和按钮组合的复位电路如下:图5-3复位电路在系统上电的瞬间,RST与电源电压同电位,随着电容的电压逐渐上升,RST电位下降,于是在RST形成一个正脉冲。只要该脉冲足够宽就可以实现复位,即ms。一般取R1,C22uF。 当人按下按钮S1时,使电容C1通过R1迅速放电,待S1弹起后,C再次充电,实现手动复位。R1一般取200。5.4 时钟电路当使用单片机的内部时钟电路时,单片机的XATL1和XATL2用来接石英晶体和微调电容,如图所示,晶体一般可以选择3M24M,电容选择30pF左右。我们选择晶振为12MHz,电容33pF。 图5-4 时钟电路第六章 系统软件设计本设计采用的是模块化的思路来进行设计和编写程序,程序主要由系统主程序和中断程序构成。主程序完成单片机的初始化,超声波的发射和接收、计算超声波发射点与障碍物之间的距离、数码管显示。系统程序设计的主要的功能是发射超声波、接收超声波、计算测量距离、数据计算、数码管显示。6.1 主程序设计主程序对整个单片机系统进行初始化后,先将超声波的回波接收标志位置位并且使单片机P0.2端口输出一个低电平用来启动超声波发射电路,同时将定时器T0启动,然后调用距离计算的子程序,再根据定时器T0记录的时间计算出所需要测量的距离,然后再调用显示子程序,再将测出的距离送到数码管显示。最后主程序通过对回波信号的接收,完成后续的工作,假如标志位清零则说明接收到了回波信号,那么主程序就返回到初始端重新将回波接收标志位置位并且在单片机的P0.1端口上发送低电平到超声波发射电路,就这样,连续不断地运行,循环不断地工作用来实现测距。 整个系统的设计的关键是对距离进行测量的,然后通过单片机来处理测量数据是比较容易实现的,能精确的实现测距。在测距中,各种信号包括温度对声速的影响都将干扰到测距的准确性,其中超声波的余波信号对整个设计中测距的精确度的干扰的影响比较大。超声波接收回路中的超声波信号一共有两种波信号:第一种波信号为余波信号就是当发射探头发射出信号之后,超声波接收探头马上就接收到的超声波信号,实际就是超声波的发射信号;另一种波信号就是有效信号,即经过障碍物表面反射回来的超声波回波信号,也是所需要测量的距离数值。 在进行超声波测距时,实际上测距就是记录从超声波发射电路发射超声波信号开始到接收到信号的声波的往返时间差,然后通过数据计算出距离,对于回波信号需要进行检测的有效信号是反射物体反射的回波信号,所以要尽量避免在检测时候检测到余波信号。余波就是在发射超声波时超声波信号直接到达接受探头的波信号,同时余波信号也是超声波测量时存在测量盲区的最主要的原因7。 超声波接收电路在接收到超声波回波后,通过HR-SR04超声波集成模块电路进行检波整形比较,并向单片机发出有效信号,单片机通过外部中断的改变记录回波信号的到达时间,中断发生之后就是表示已经接收到了回波信号,这个时候停止计时,并且读取计数器中的数值,这个数值就是需要进行测量的时间差的数据。程序中对测距距离的计算方法是按S=17N/1000=0.017N(cm)进行计算的,其中,N为计数器的值,声速的值取为340 m/s。 综合以上的分析可得到系统主程序流程图,系统主程序的流程图如图6.1所示。 开 始单片机初始化超声波模块复位发射超声波并启动T0开中断接收到回波的同时中断停止计算测量距离显示距离延时图6.1 系统主程序流程图6.2 中断处理程序负责计算超声波发射点与障碍物之间的距离是/INT0的中断程序。根据前面的对超声接收电路的分析,在超声波集成模块接收到超声波回波信号后,超声波接收电路就会产生一个低电平送至单片机的P0.1引脚,使系统中断,则系统转入中断处理程序。进入中断处理后,定时器T0和外部中断0就立即被关闭,同时读取时间值,并给回波接收标志位清零即成功接收到回波信号。中断处理程序的程序流程图如图6.2所示 返回距离计算中断关闭计时开始显示距离图6.2 中断处理程序流程图在中断处理程序过程中,对距离数据的计算是比较关键的。首先是从定时器0得到超声波传播中往返所用的时间,再运用公式计算得出障碍物与车尾之间的距离,然后再将测得的距离值传到其他功能模块进行其他功能的处理。C程序如下:void zd0() interrupt 1 /T0中断用来计数器溢出,超过测距范围 flag=1; /中断溢出标志 void zd3() interrupt 3 /T1中断用来扫描数码管和计800MS启动模块 TH1=0xf8; TL1=0x30; Display(); timer+; if(timer=400) timer=0; TX=1; /800MS 启动一次模块 _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); TX=0; void main( void ) TMOD=0x11; /设T0为方式1,GATE=1;TH0=0;TL0=0; TH1=0xf8; /2MS定时TL1=0x30;ET0=1; /允许T0中断ET1=1; /允许T1中断TR1=1; /开启定时器EA=1; /开启总中断while(1) while(!RX);/当RX为零时等待 TR0=1; /开启计数 while(RX);/当RX为1计数并等待 TR0=0;/关闭计数 Conut();/计算 6.3 距离计算及显示模块程序从距离计算公式S=17N/1000=0.017N(cm)中可以很明显看出来,如果想要得到具体的距离的值,就只需要得到从超声波发送开始到接收到超声波这个过程中定时器0的计数的次数。本设计中,采用了4位共阳极连接的数码管显示来显示与障碍物之间的距离,同时数码管与P2口连接进行动态的段扫描。由于这个距离值是不断变化的,所以,这个数码管的显示的过程是在外部中断0发生后才进行的。 所以当主程序给超声波发生器发送了信号后,此时中断和定时器0就已经被打开,并开始计时了。当超声波接收电路接收了到回波信号的同时时,电路便会产生一个低电平到单片机的P0.1端口,在单片机检测到该信号后,定时器计时就将停止,同时定时器的计数的次数将被提取出来,这样就可以得到以cm为单位的测量的距离值。C程序如下:void Conut(void) time=TH0*256+TL0; TH0=0; TL0=0; S=(time*1.7)/100; /算出来是CM if(S500)|flag=1) /超出测量范围显示“-” flag=0; disbuff0=10; /“-” disbuff1=10; /“-” disbuff2=10; /“-” else disbuff0=S%1000/100; disbuff1=S%1000%100/10; disbuff2=S%1000%10 %10; 第七章 硬件组装及性能调试本汽车防撞装置以HC-SR04型的超声波测距传感器模块为主体,中心频率是基本稳定在40 kHz,安装时保持模块平整摆放即使两超声波探头的中心轴线平行9。其它硬件的组装和连线焊接如下:P1口分别接到四位八段的共阳数码管的a、b、c、d、e、f、g、dp引脚上,用来进行动态的段扫描;P2口的P2.3、P2.4、P2.5、控制四位数码管的片选; P0.2端口接超声波模块的发射端;P0.1端口接超声波接收端,用作判断超声波是否接收到了回波的信号,并控制计数器停止计时。 超声波测距时需要测的是从发射开始到接收到回波信号的这段时间里的声波往返的时间差,由于需要对接收到的回波信号进行检测,而检测的有效信号为反射的回波信号,所以应该要尽量避免检测到余波信号而超声波检测中最小测量盲区存在的主要原因也是因为余波干扰的缘故。因为超声波测距所能测的距离的大小与传感器的驱动功率、测量方法有很大关系,而从理论上来讲,本设计系统采用的超声波模块测距时存在的盲区大约为1 cm左右,而且本设计理论上的测量距离范围为1 cm5 m,测量的误差比较小,测量显示值稳定,能满足设计要求。本系统在设计和数据的计算过程中无可避免地会产生一定的误差,以下对可能产生误差的原因进行分析:1)环境的温度所引起的误差环境温度的影响是本设计在不同的温度条件下测量数据存在误差的主要原因,根据有关资料,在当温差较大时,前后两次测距的误差肯定前后相差也比较大。而本设计中并没有温度补偿模块,主要是本设计做为简单测距使作用而已,所以本设计并没有采用温度补偿模块进行设计。 2)不同障碍物表面材料的不同介质引起的误差因为表面粗糙的障碍物介质要比光滑介质的测量结果要差,如果障碍物的发射面比较粗糙会引起发射信号散射开那么回波信号就会减弱,这样就会导致测量结果的误差增大。3)超声波模块的感应角的影响两个超声波探头即发射探头和接收探头和障碍物之间存在一个几何角度,反射波入射到探头存在一定的角度,当这个角度过大时,这就会造成测量较大的误差,或者说根本接收不到回波信号。特别是在障碍物的距离较小的时候这个误差就成为了距离测量的主要误差的原因,但是这种误差是可以尽量减小的,利用发射能力强、散射小的探头,或者多用几个探头。 4)余波信号的影响在测量时有一部分的声波是从发射探头直接转收到接收探头的,这部分声波即是余波信号,这种余波对测量的干扰是挺大的。但是这种干扰能够通过别的方法进行处理,比如软件算法的方法去消除直达波的干扰。当芯片收到信号波时自动判定收到的超声波信号是发射的声波衍射而返回来的信号时就会自动忽略掉,继续去等待检测在这个工作周期内是否有有效反射波反射回来,如果有就进行处理,没有就进行新的一次测量。致 谢毕业设计是对所学的知识运用能力进行的一次全面性的考察,也是提高基本能力的一种训练,培养能将所学知识综合运用的能力和能够独立地对问题进行分析和解决的能力,为以后工作打下夯实的基础。首先要感谢在本次设计中给与我大力帮助和指导的指导老师高见芳老师,在整个做毕业设计的各个阶段,不管是查阅相关资料还是设计系统的方案的修改和确定以及中期检查和详细的设计思路,以及最后实物的装配等的整个过程中高见芳老师都给了我悉心的指导。对于我的每个问题,老师总是耐心地解答,使我能够顺利地完成毕业设计。除了敬佩高老师的专业水平外,他严谨负责的工作态度也是非常值得学习的,并且对今后的学习和工作都将产生影。其次感谢我的爸爸妈妈,焉得谖草,言树之背,养育之恩,无以回报,你们永远健康快乐是我最大的心愿。本次毕业设计已至尾声。由于实际设计经验的匮乏,在许多地方难免有考虑不周全的,如果没有高老师和同学们的帮助和支持,没有他们的帮助,完成这个设计是有一定的难度的。 所以要感谢所有给我授过课的老师,无论是基础课老师还是专业课老师都表示深深谢意。通过C语言的学习,在编程的时候也不感觉到非常棘手;计算机知识的学习,使我能够熟练使用多种最基本的计算机相关软件和专业软件的使用方法,包括基本的Windows办公软件,还有一些专业软件,如Protel99、Proteus、Keil uVision3等。 最后,再次感谢所有帮助过我的老师和同学参 考 文 献1 杨利军. 电路基础. 长沙:中南大学出版社,2007.2 杨利军. 模拟电子技术. 长沙:中南大学出版社,2003.3 洪志刚. 传感器原理及应用. 长沙:中南大学出版社,2007.4 刘守义. 单片机应用技术. 西安:西安电子科技大学出版社,2007.5 龙治红 谭本军. 数字电子技术. 北京:北京理工大学出版社,2010.6 李建忠.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业内部审计财务代理合同标准文本
- 零售业采购计划编制及目标优化合同
- 住宅小区车位租赁合同标准范本
- 财产分割及子女抚养权纠纷调解协议书
- 房地产项目前期开发手续一站式代办与专业咨询协议
- 消费者金融代收款代理合同
- 不可压缩流体的一元流动课件
- 车辆驾驶与智能驾驶系统承包合同范本
- 文化创意产业厂房转租合同书
- 餐饮企业股东权益保障与合伙经营合同
- 警察政治培训课件
- 2025-2030中国疏浚工程行业发展态势与前景规划分析报告
- 科室vte管理制度
- 2025年中国舒适眼镜白皮书-艾瑞咨询-202506
- 中小学美术教学评价构建及实施策略
- 2025-2030玉石行业风险投资发展分析及运作模式与投融资研究报告
- 江苏省扬州市2024-2025学年四年级下学期6月数学期末试题一(有答案)
- (2025)发展对象培训考试题和答案
- 2024年西南医科大学招聘专职辅导员真题
- 2025年经济学基础理论考试试卷及答案
- 建筑施工项目支付流程及管理
评论
0/150
提交评论