




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3 用公式法求解一元二次方程第1课时 用公式法求解一元二次方程教学目标 (一)教学知识点 1一元二次方程的求根公式的推导. 2会用求根公式解一元二次方程. (二)能力训练要求 1通过公式推导,加强推理技能训练,进一步发展逻辑思维能力 2会用公式法解简单的数字系数的一元二次方程 (三)情感与价值观要求 通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯教学重点 一元二次方程的求根公式教学难点 求根公式的条件:b2-4ac0教学方法 讲练相结合教具准备 投影片五张 第一张:复习练习(记作投影片23 A) 第二张:试一试(记作投影片23B) 第三张:小亮的推导过程(记作投影片23 C) 第四张:求根公式(记作投影片23 D) 第五张:例题(记作投影片23 E)教学过程 巧设现实情景,引入课题 师我们前面学习了一元二次方程的解法下面来做一练习以巩固其解法(出示投影片23 A)1用配方法解方程2x2-7x+30生甲解:2x2-7x+30, 两边都除以2,得x2-x+0 移项,得;x2-x=- 配方,得x2-x+(-)2-+(-)2 两边分别开平方,得 x- 即x-=或x-=- x1=3,x2= 师同学们做得很好,接下来大家来试着做一做下面的练习(出示投影片23 B)试一试,肯定行:1用配方法解下列关于x的方程:(1)x2+ax1;(2)x2+2bx+4ac0 生乙(1)解x2+ax1, 配方得x2+ax+()21+()2, (x+)2= 两边都开平方,得 x+, 即x+,x+=-. x1=, x2 生丙(2)解x2-2bx+4ac0, 移项,得x2+2bx-4ac 配方,得x2-2bx+b2-4ac+b2, (x+b)2=b2-4ac 两边同时开平方,得 x+b, 即 x+b,x+b- x1=-b+,x2-b- 生丁老师,我觉得丁同学做错了,他通过配方得到(x+b)2b2-4ac根据平方根的性质知道:只有正数和零才有平方根,即只有在b2-4ac0时,才可以用开平方法解出x来所以,在这里应该加一个条件:b2-4ac0 师噢,同学们来想一想,讨论讨论,戊同学说得有道理吗? 生齐声戊同学说得正确因为负数没有平方根,所以,解方程x2+2bx+4ac0时,必须有条件:b2-4ac0,才有丁同学求出的解否则,这个方程就没有实数解 师同学们理解得很正确,那解方程x2+ax1时用不用加条件呢? 生齐声不用 师那为什么呢? 生齐声因为把方程x2+ax1配方变形为(x+)2= ,右边就是一个正数,所以就不必加条件了 师好,从以上解题过程中,我们发现:利用配方法解一元二次方程的基本步骤是相同的因此,如果能用配方法解一般的一元二次方程ax2+bx+c0(a0),得到根的一般表达式,那么再解一元二次方程时,就会方便简捷得多 这节课我们就来探讨一元二次方程的求根公式 讲授新课 师刚才我们已经利用配方法求解了四个一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c0(a0)呢? 大家可参照解方程2x2-7x+30的步骤进行 生甲因为方程的二次项系数不为1,所以首先应把方程的二次项系数变为1,即方程两边都除以二次项系数a,得 x2+ =0 生乙因为这里的二次项系数不为0,所以,方程ax2+bx+c0(a0)的两边都除以a时,需要说明a0 师对,以前我们解的方程都是数字系数,显然就可以看到:二次项系数不为0,所以无需特殊说明,而方程ax2+bx+c0(a0)的两边都除以a时,必须说明a0 好,接下来该如何呢? 生丙移项,得x2+配方,得x2+,(x+. 师这时,可以直接开平方求解吗? 生丁不,还需要讨论 因为a0,所以4a20当b2-4ac0时,就可以开平方 师对,在进行开方运算时,被开方数必须是非负数,即要求0因为4a20恒成立,所以只需b2-4ac是非负数即可 因此,方程(x+)2的两边同时开方,得x+=. 大家来想一想,讨论讨论: =吗? 师当b2-4ac0时,x+=因为式子前面有双重符号“”,所以无论a0还是a0等条件在推导过程中的应用,也要弄清其中的道理 (2)应用求根公式解一元二次方程,通常应把方程写成一般形式,并写出a、b、c的数值以及计算b2-4ac的值,当熟练掌握求根公式后,可以简化求解过程 课后作业 (一)课本P 43习题25 1、2 (二)预习内容:P44 活动与探究 1阅读材料,解答问题: 阅读材料: 为解方程(x2-1)2-5(x2-1)+40,我们可以将(x2-1)视为一个整体,然后设x2-1y,则(x2-1)2y2,原方程化为y2-5y+4=0 解得y1=4,y21 当y14时,x2-14, x25,x= 当y1时,x2-11, x22,x= 原方程的解为x1,x2-, x3= ,x4=-. 解答问题: (1)填空: 在由原方程得到方程的过程中,利用 法达到了降次的目的,体现了 的数学思想 (2)解方程x4-x2-60 过程通过对本题的阅读,让学生在获取知识的同时,来提高学生的阅读理解和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国火锅店行业发展趋势及经营效益预测报告
- 算法软件外包技术协议书6篇
- 2025版河南省事业单位考试【职业能力测试】题库及答案
- 婚姻破裂后子女抚养、财产分割及共同债务协议
- 离婚协议国际翻译与跨国执行细则
- 离婚协议签订过程中双方情绪辅导及心理支持协议
- 环保监测移动通信基站租赁与数据分析合同
- 2025年补偿贸易购销合同2篇
- 大数据产业园区商铺租赁与数据安全管理合同
- 商业租赁合同中关于广告位的附加协议
- CFG桩复合地基沉降及承载力自动计算
- 浅析加强物资采购质量的措施
- 青岛版二年级下册万以内数的加减法竖式计算300题及答案
- 2024年天津港集团有限公司招聘笔试参考题库附带答案详解
- 传统体育运动在小学课堂中的应用课件教案
- 类脑计算与神经网络
- 手术授权申请表
- 2023年度全国出版专业技术人员职业资格考试-基础知识(初级)试题
- 2023届高考语文备考之整句与散句变换(10道真题含答案)
- 灌注桩后注浆施工记录
- 食品样品的采集和预处理-食品样品的采集与制备
评论
0/150
提交评论