高考数学一轮总复习 第七章 第5节 直线、平面垂直的判定与性质课件.ppt_第1页
高考数学一轮总复习 第七章 第5节 直线、平面垂直的判定与性质课件.ppt_第2页
高考数学一轮总复习 第七章 第5节 直线、平面垂直的判定与性质课件.ppt_第3页
高考数学一轮总复习 第七章 第5节 直线、平面垂直的判定与性质课件.ppt_第4页
高考数学一轮总复习 第七章 第5节 直线、平面垂直的判定与性质课件.ppt_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七章立体几何与空间向量 第5节直线 平面垂直的判定与性质 1 以立体几何的定义 公理和定理为出发点 认识和理解空间中线 面垂直的有关性质与判定定理 2 能运用公理 定理和已获得的结论证明一些空间图形垂直关系的简单命题 要点梳理 1 直线与平面垂直 1 直线与平面垂直的定义 直线l与平面 内的 一条直线都垂直 就说直线l与平面 互相垂直 2 直线与平面垂直的判定定理与性质定理 任意 a b a b o l a l b 两条相交直线都 b a 2 直线与平面所成的角 1 定义平面的一条斜线和它在平面上的 所成的 叫做这条直线和这个平面所成的角 如图 射影 锐角 pao 3 平面与平面垂直 1 二面角的有关概念 二面角的定义 从一条直线出发的两个半平面所组成的图形叫做二面角 这条直线叫做二面角的棱 两个半平面叫做二面角的面 如图 记作 二面角 l 或二面角 ab 或二面角p ab q 二面角的平面角 在二面角 l 的棱l上任取一点o 以点o为垂足 在半平面 和 内分别作垂直于棱l的射线oa和ob 则射线oa和ob构成的 aob叫做二面角的平面角 二面角的范围是 2 平面与平面的垂直定义 一般地 两个平面相交 如果它们所成的二面角是 就说这两个平面互相垂直 0 直二面角 3 平面与平面垂直的判定定理与性质定理 垂线 l 交线 质疑探究 若平面 内的一条直线垂直于平面 内的无数条直线 则 吗 提示 不一定 若这无数条直线都平行 则得不到 内的这条直线垂直于 从而得不到 基础自测 1 设a b c是三条不同的直线 是两个不同的平面 则a b的一个充分条件是 a a c b cb a b c a b d a b 解析 对于选项c 在平面 内作c b 因为a 所以a c 故a b a b选项中 直线a b可能是平行直线 也可能是异面直线 d选项中一定有a b 答案 c 2 将图1中的等腰直角三角形abc沿斜边bc的中线折起得到空间四边形abcd 如图2 则在空间四边形abcd中 ad与bc的位置关系是 图1图2a 相交且垂直b 相交但不垂直c 异面且垂直d 异面但不垂直 解析 在图1中的等腰直角三角形abc中 斜边上的中线ad就是斜边上的高 则ad bc 翻折后如图2 ad与bc变成异面直线 而原线段bc变成两条线段bd cd 这两条线段与ad垂直 即ad bd ad cd 故ad 平面bcd 所以ad bc 答案 c 3 2015 通化模拟 已知如图 六棱锥p abcdef的底面是正六边形 pa 平面abc 则下列结论不正确的是 a cd 平面pafb df 平面pafc cf 平面pabd cf 平面pad 解析 a中 因为cd af af 平面paf cd 平面paf 所以cd 平面paf成立 b中 因为abcdef为正六边形 所以df af 又因为pa 平面abcdef 所以pa df 又因为pa af a 所以df 平面paf成立 c中 因为cf ab ab 平面pab cf 平面pab 所以cf 平面pab 而d中cf与ad不垂直 答案 d 4 是两个不同的平面 m n是平面 及 之外的两条不同的直线 给出四个论断 m n n m 以其中三个论断作为条件 剩余的一个论断作为结论 写出你认为正确的一个命题 答案 可填 与 中的一个 5 将正方形abcd沿ac折成直二面角后 dab 答案 60 典例透析 考向一直线与平面垂直的判定与性质例1 2015 成都市质检 如图 在直三棱柱 侧棱与底面垂直的三棱柱 abc a1b1c1中 ac aa1 2ab 2 bac 90 点d是侧棱cc1延长线上一点 ef是平面abd与平面a1b1c1的交线 1 证明 依题意 有平面abc 平面a1b1c1 又平面abc 平面abd ab 平面a1b1c1 平面abd ef ef ab 三棱柱abc a1b1c1为直三棱柱 且 bac 90 ab aa1 ab ac 而aa1 ac a ab 平面acc1a1 又a1c 平面acc1a1 ab a1c ef a1c 拓展提高 1 证明直线和平面垂直的常用方法 2 当直线和平面垂直时 该直线垂直于平面内的任意一条直线 常用来证明线线垂直 3 斜线与平面所成的角 首先作出面的垂线 才得出斜线在面内的射影 才可得出斜线与平面所成的角 转化为直角三角形求解 活学活用1 2015 湖南省五市十校联考 如图 在四棱锥p abcd中 底面abcd为平行四边形 adc 45 ad ac 1 o为ac的中点 po 平面abcd po 2 m为pd的中点 1 证明 ad 平面pac 2 求直线am与平面abcd所成角的正切值 1 证明 因为 adc 45 且ad ac 1 所以 dac 90 即ad ac 又po 平面abcd ad 平面abcd 所以po ad 而ac po o 所以ad 平面pac 2 解 取do的中点n 连接mn an 因为m为pd的中点 所以mn po 且mn po 1 由po 平面abcd 得mn 平面abcd 所以 man是直线am与平面abcd所成的角 考向二平面与平面垂直的判定与性质例2 2015 烟台四校达标检测 如图 在长方体abcd a1b1c1d1中 ab ad 1 aa1 2 点p为dd1的中点 1 求证 平面pac 平面bdd1 2 求证 pb1 平面pac 思路点拨 1 利用ac 面bdd1 2 利用计算关系pb1 pc pb1 pa 证明 1 在长方体abcd a1b1c1d1中 ab ad 1 底面abcd是正方形 ac bd 又dd1 平面abcd ac 平面abcd ac dd1 又bd dd1 d bd 平面bdd1 dd1 平面bdd1 ac 平面bdd1 ac 平面pac 平面pac 平面bdd1 拓展提高 1 判定面面垂直的方法 面面垂直的定义 作两平面构成二面角的平面角 计算其为90 面面垂直的判定定理 a a 3 面面垂直性质的应用 两平面垂直的性质定理是把面面垂直转化为线面垂直的依据 运用时要注意 平面内的直线 两个相交平面同时垂直于第三个平面 它们的交线也垂直于第三个平面 活学活用2 2015 浙江省名校联考 如图 ab为圆o的直径 点e f在圆o上 ab ef 矩形abcd所在的平面与圆o所在的平面互相垂直 已知ab 2 ef 1 1 求证 平面daf 平面cbf 2 求直线ab与平面cbf所成角的大小 1 证明 平面abcd 平面abef cb ab 平面abcd 平面abef ab cb 平面abef af 平面abef af cb 又ab为圆o的直径 af bf af 平面cbf af 平面adf 平面daf 平面cbf 考向三二面角的求法例3 2015 宁波模拟 如图所示 三棱柱abc a1b1c1的底面是边长为2的正三角形且侧棱垂直于底面 侧棱长是 d是ac的中点 1 求证 b1c 平面a1bd 2 求二面角a1 bd a的大小 3 求直线ab1与平面a1bd所成的角的正弦值 思路点拨 1 三棱柱的侧面是矩形 对角线a1b ab1的交点与点d的连线平行于b1c 2 由于三棱柱的底面是正三角形 d为ac的中点 由侧面与底面垂直 可以得到bd 平面acc1a1 bd a1d a1da就是二面角的平面角 3 根据 2 得平面a1bd 平面a1ad 只要过点a作a1d的垂线即可得到点a在平面a1bd内的射影 即得到了线面角 1 证明 设ab1与a1b相交于点p 连接pd 则p为ab1的中点 因为d为ac的中点 所以pd b1c 又因为pd 平面a1bd b1c 平面a1bd 所以b1c 平面a1bd 2 解 由题知 平面acc1a1 平面abc 平面acc1a1 平面abc ac 又因为bd ac 则bd 平面acc1a1 所以bd a1d 所以 a1da就是二面角a1 bd a的平面角 3 解 作am a1d于m 由 2 易知bd 平面acc1a1 因为am 平面acc1a1 所以bd am 因为a1d bd d 所以am 平面a1bd 连接mp 易知 apm就是直线ab1与平面a1bd所成的角 拓展提高空间角中的难点是二面角 作二面角的平面角的常用方法有 直接法 根据平面角的概念直接作 如二面角的棱是两个等腰三角形的公共底边 就可以取棱的中点 垂面法 过二面角棱上一点作棱的垂面 则垂面与二面角的两个半平面的交线所成的角就是二面角的平面角或其补角 垂线法 过二面角的一个半平面内一点a作另一个半平面的垂线 再从垂足b向二面角的棱作垂线 垂足为c 这样二面角的棱就垂直于这两个垂线所确定的平面abc 连结ac 则ac也与二面角的棱垂直 acb就是二面角的平面角或其补角 这样就把问题归结为解一个直角三角形 是求解二面角最基本 最重要的方法 活学活用3在四棱锥p abcd中 底面abcd是矩形 已知ab 3 ad 2 pa 2 pd 2 pab 60 1 证明 ad 平面pab 2 求异面直线pc与ad所成的角的正切值的大小 3 求二面角p bd a的正切值的大小 1 证明 在 pad中 由题设pa 2 ad 2 pd 2 可得pa2 ad2 pd2 于是ad pa 在矩形abcd中 ab ad 又pa ab a 所以ad 平面pab 3 解 如图所示 过点p作ph ab于h 过点h作he bd于e 连接pe 因为ad 平面pab ph 平面pab 所以ad ph 又ad ab a 所以ph 平面abcd 故he为pe在平面abcd内的射影 bd pe 从而 peh是二面角p bd a的平面角 思想方法16立体几何中的探索性问题典例 2015 朝阳区第一学期末 如图 在四棱锥s abcd中 平面sad 平面abcd 四边形abcd为正方形 且p为ad的中点 1 求证 cd 平面sad 2 若sa sd m为bc的中点 在棱sc上是否存在点n 使得平面dmn 平面abcd 并证明你的结论 审题视角 1 由面sad 面abcd性质得结论 2 取sc的中点 证明面dmn 面abcd 证明 1 因为四边形abcd为正方形 所以cd ad 又平面sad 平面abcd 且平面sad 平面abcd ad 所以cd 平面sad 2 存在点n为sc的中点 使得平面dmn 平面abcd 连接pc dm交于点o 连接pm sp nm nd no 方法点睛解决探究性问题一般要采用执果索因的方法 假设求解的结果存在 从这个结果出发 寻找使这个结论成立的充分条件 如果找到了符合题目结果要求的条件 则存在 如果找不到符合题目结果要求的条件 出现矛盾 则不存在 1 求证 de 平面a1cb 2 求证 a1f be 3 线段a1b上是否存在点q 使a1c 平面deq 说明理由 1 证明 因为d e分别为ac ab的中点 所以de bc 又因为de 平面a1cb bc 平面a1cb 所以de 平面a1cb 2 证明 由已知得ac bc且de bc 所以de ac 所以de a1d de cd a1d cd d 所以de 平面a1dc 而a1f 平面a1dc 所以de a1f 又因为a1f cd 且de cd d 所以a1f 平面bcde 所以a1f be 3 解 线段a1b上存在点q 使a1c 平面deq 理由如下 如图 分别取a1c a1b的中点p q 则pq bc 又因为de bc 所以de pq 所以平面deq即为平面dep 由 2 知 de 平面a1dc

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论