已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程的解法举例 1 解一元二次方程的方法有 因式分解法 直接开平方法 公式法 配方法 方程一边是0 另一边整式容易因式分解 2 cc 0 化方程为一般式 二次项系数化为1 5x2 3x 0 3x2 2 0 x2 4x 6 2x2 x 3 0 2x2 7x 7 0 2 引例 给下列方程选择较简便的方法 运用因式分解法 运用直接开平方法 运用公式法 运用因式分解法 运用公式法 例1 选择适当的方法解下列方程 1 填空 x2 3x 1 0 3x2 1 0 3t2 t 0 x2 4x 2 2x2 3x 1 0 5 m 2 2 8 3y2 y 1 0 2x2 4x 1 0 2x2 5x 3 0适合运用直接开平方法适合运用因式分解法适合运用公式法适合运用配方法 3x2 1 0 5 m 2 2 8 3t2 t 0 2x2 3x 1 0 2x2 5x 3 0 x2 3x 1 0 3y2 y 1 0 2x2 4x 1 0 x2 4x 2 规律 一般地 当一元二次方程一次项系数为0时 ax2 c 0 应选用直接开平方法 若常数项为0 ax2 bx 0 应选用因式分解法 若一次项系数和常数项都不为0 ax2 bx c 0 先化为一般式 看一边的整式是否容易因式分解 若容易 宜选用因式分解法 不然选用公式法 不过当二次项系数是1 且一次项系数是偶数时 用配方法也较简单 巩固练习 公式法虽然是万能的 对任何一元二次方程都适用 但不一定是最简单的 因此在解方程时我们首先考虑能否应用 直接开平方法 因式分解法 等简单方法 若不行 再考虑公式法 适当也可考虑配方法 2 用适当方法解下列方程 5x2 7x 6 0 2x2 7x 4 0 4 t 2 2 3 x2 2x 9999 0 例2 解方程 x 1 x 1 2x 2 x 2 2 5 x 2 3 0 2m 3 2 2 4m 7 总结 方程中有括号时 应先用整体思想考虑有没有简单方法 若看不出合适的方法时 则把它去括号并整理为一般形式再选取合理的方法 思考 1 变方程 为 2 x 2 2 5 2 x 3 0 再变为 2 x 2 2 5x 13 0 能不能用整体思想 2 x 2 2 5 x 2 3 0或2 2 x 2 5 2 x 3 0 2 x 2 2 5x 10 3 0 2 x 2 2 5 x 2 3 0 巩固练习 y y 2 2y 3 3t t 2 2 t 2 3 t 2 t2 9 x 101 2 10 x 101 9 0 小结 ax2 c 0 ax2 bx 0 ax2 bx c 0 因式分解法 公式法 配方法 2 公式法虽然是万能的 对任何一元二次方程都适用 但不一定是最简单的 因此在解方程时我们首先考虑能否应用 直接开平方法 因式分解法 等简单方法 若不行 再考虑公式法 适当也可考虑配方法 3 方程中有括号时 应先用整体思想考虑有没有简单方法 若看不出合适的方法时 则把它去括号并整理为一般形式再选取合理的方法 1 直接开平方法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 14746-2025儿童骑行及活动用品安全儿童自行车
- GB/T 4957-2025非磁性导电基体金属上非导电覆盖层覆盖层厚度测量振幅敏感涡流法
- GB/T 46367-2025移动通信终端可靠性技术要求和测试方法
- 湖北科技学院《商务计划与实践》2024-2025学年第一学期期末试卷
- 2025年福建厦门松柏中学高二上数学期末检测模拟试题含解析
- 江苏城乡建设职业学院《可编程器件开发》2024-2025学年第一学期期末试卷
- 眼科青光眼处方药使用须知
- 肾内科肾脏移植术后护理要点
- 急诊科严重创伤护理方案
- 胀痛痉挛性疼痛护理指南
- 0和它的数字兄弟
- GB/Z 41275.23-2023航空电子过程管理含无铅焊料航空航天及国防电子系统第23部分:无铅及混装电子产品返工/修复指南
- 2023年四川省成都市锦江区九年级一诊数学试题(含答案)
- 平面构成-对比构成的创意设计
- 学术道德与科研诚信
- 七台河市红十字博爱医院建设项目环境影响报告
- 有限空间作业安全隐患排查清单
- 铁路轨道的组成
- 微生物代谢组学省名师优质课赛课获奖课件市赛课百校联赛优质课一等奖课件
- (完整版)岭南版初中美术考试试题
- 多联机故障代码
评论
0/150
提交评论