数学史朱家生版课后题目参考答案第六章.docx_第1页
数学史朱家生版课后题目参考答案第六章.docx_第2页
数学史朱家生版课后题目参考答案第六章.docx_第3页
数学史朱家生版课后题目参考答案第六章.docx_第4页
数学史朱家生版课后题目参考答案第六章.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

11数本(1)班 郭奇 20110410471.解析几何产生的背景是什么?在那个时期哪些问题导致了人们对运用代数方法处理几何问题的兴趣?解析几何的实际背景更多的是来自对变量数学的需求文艺复兴后的欧洲进入了一个生产迅速发展,思想普遍活跃的时代机械的广泛使用,促使人们对机械性能进行研究,这需要运动学知识和相应的数学理论;建筑的兴盛 、河道和堤坝的修建又提出了有关固体力学和流体力学的问题,这些问题的合理解决需要正确的数学计算;航海事业的发展向天文学,实际上也是向数学提出了如何精确测定经纬度、计算各种不同形状船体的面积、体积以及确定重心的方法,望远镜与显微镜的发明,提出了研究凹凸透镜的曲面形状问题在数学上就需要研究求曲线的切线问题所有这些都难以仅用初等几何或仅用初等代数在常量数学的范围内解决,于是,人们就试图创设变量数学作为代数与几何相结合的产物解析几何,也就在这种背景下问世了2、笛卡尔研究解析几何的出发点是什么?他又是怎么得到解析几何思想的? 答:笛卡儿对数学方法的深入研究,是他断定数学可以有效地应用到其他科学上去。他分析了古代已有的几何学和当时已经定型的代数学的优缺点,批评希腊几何过于抽象,并且过多地依靠图形,而代数则使人受到某些规则和公式的约束。他提出“寻求另外一种包含这两门科学的好处而没有他们的缺点的方法。”当他看到代数具有作为一门普遍的科学方法的潜力,便着手把代数用到几何上去。 在几何学一书中,他仿造韦达的方法,用代数来解决几何作图的问题,比希腊人有了明显进展。(在变量的理解和应用上。希腊人无法处理三个以上变量的乘积。而笛卡儿是从纯数学方面考虑,所以可以处理三个以上的变量的乘积。)笛卡儿之所以能创立解析几何,主要是他勇于探索,勤于思考。运用科学方法的必然结果。 3.阐述费马的主要数学成就.(1)对解析几何的贡献费马独立于勒奈笛卡儿发现了解析几何的基本原理。1629年以前,费马便着手重写公元前三世纪古希腊几何学家阿波罗尼奥斯失传的平面轨迹一书。他用代数方法对阿波罗尼奥斯关于轨迹的一些失传的证明作了补充,对古希腊几何学,尤其是阿波罗尼奥斯圆锥曲线论进行了总结和整理,对曲线作了一般研究。并于1630年用拉丁文撰写了仅有八页的论文平面与立体轨迹引论。费马于1636年与当时的大数学家梅森、罗贝瓦尔开始通信,对自己的数学工作略有言及。但是平面与立体轨迹引论的出版是在费马去世14年以后的事,因而1679年以前,很少有人了解到费马的工作,而现在看来,费马的工作却是开创性的。(2)对微积分的贡献16、17世纪,微积分是继解析几何之后的最璀璨的明珠。人所共知,牛顿和莱布尼茨是微积分的缔造者,并且在其之前,至少有数十位科学家为微积分的发明做了奠基性的工作。但在诸多先驱者当中,费马仍然值得一提。曲线的切线问题和函数的极大、极小值问题是微积分的起源之一。这项工作较为古老,最早可追溯到古希腊时期。阿基米德为求出一条曲线所包任意图形的面积,曾借助于穷竭法。由于穷竭法繁琐笨拙,后来渐渐被人遗忘、直到16世纪才又被重视。由于约翰尼斯开普勒在探索行星运动规律时,遇到了如何确定椭圆形面积和椭圆弧长的问题,无穷大和无穷小的概念被引入并代替了繁琐的穷竭法。尽管这种方法并不完善,但却为自卡瓦列里到费马以来的数学家开辟厂一个十分广阔的思考空间。费马建立了求切线、求极大值和极小值以及定积分方法,对微积分做出了重大贡献。(3)对概率论的贡献早在古希腊时期,偶然性与必然性及其关系问题便引起了众多哲学家的兴趣与争论,但是对其有数学的描述和处理却是15世纪以后的事。l6世纪早期,意大利出现了卡尔达诺等数学家研究骰子中的博弈机会,在博弈的点中探求赌金的划分问题。到了17世纪,法国的帕斯卡和费马研究了意大利的帕乔里的著作摘要,建立了通信联系,从而建立了概率学的基础。(4)对数论的贡献17世纪初,欧洲流传着公元三世纪古希腊数学家丢番图所写的算术一书。l621年费马在巴黎买到此书,他利用业余时间对书中的不定方程进行了深入研究。费马将不定方程的研究限制在整数范围内,从而开始了数论这门数学分支。费马在数论领域中的成果是巨大的,其中主要有:费马大定理:n2是整数,则方程xn+yn=zn没有满足xyz0的整数解。这个是不定方程,它已经由英国数学家怀尔斯证明了(1995年),证明的过程是相当艰深的!费马小定理:ap-a0(mod p),其中p是一个素数,a是正整数,它的证明比较简单。事实上它是Euler定理的一个特殊情况,Euler定理是说:a(n)-10(mod n),a,n都是正整数,(n)是Euler函数,表示和n互素的小于n的正整数的个数.(5)对光学的贡献费马在光学中突出的贡献是提出最小作用原理,也叫最短时间作用原理。这个原理的提出源远流长。早在古希腊时期,欧几里得就提出了光的直线传播定律相反射定律。后由海伦揭示了这两个定律的理论实质光线取最短路径。经过若干年后,这个定律逐渐被扩展成自然法则,并进而成为一种哲学观念。个更为一般的“大自然以最短捷的可能途径行动”的结论最终得出来,并影响了费马。费马的高明之处则在于变这种的哲学的观念为科学理论。费马同时讨论了光在逐点变化的介质中行径时,其路径取极小的曲线的情形。并用最小作用原理解释了一些问题。这给许多数学家以很大的鼓舞。尤其是莱昂哈德欧拉,竟用变分法技巧把这个原理用于求函数的极值。这直接导致了拉格朗日的成就,给出了最小作用原理的具体形式:对一个质点而言,其质量、速度和两个固定点之间的距离的乘积之积分是一个极大值和极小值;即对该质点所取的实际路径来说,必须是极大或极小。 4、 试比较笛卡尔和费马的思想方法与现代解析几何的异同。 答:在解析几何的研究过程中费马的工作与笛卡儿工作的共同之处是都没有负坐标,但是,两人研究坐标几何的方法大不相同。笛卡儿批评了希腊的传统,而且主张同这些传统决裂;费马则着眼于继承希腊人的思想,认为他自己的工作是重新表达了阿波罗尼斯的工作。真正的发现代数方法的威力是属于笛卡儿的,他知道自己是在改造古代的方法。因此,和费马的方法相比,笛卡儿的方法具有普遍性,而且就潜力而论也适用于更一般的曲线。 随着解析几何自身的产生和发展,“曲线”概念得到进一步深化。解析几何把“曲线”概括为任意的几何图形,开辟了用代数方法研究几何问题的新思路。其次,笛卡儿和费马发明的解析几何,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论