




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数与图形的面积问题知识导图三角形常见考查图形 梯形 不规则图形直接计算分割法相似图形铅垂高乘以水平宽二次函数与图形的面积问题 说明的顺序和结构三点剖析考点能力要求重难点易错点识记理解分析应用综合表达分割法求图形的面积利用图形的相似求图形的面积铅垂高乘以水平宽知识精讲考点 1 利用分割法求图形的面积【考点解析:】适用题型:1、矩形或者正方形中,计算不规则部分面积;2、一次函数和二次函数图像中不规则三角形或者四边形的面积常见分割方法: 1、用规则图形面积减去规则图形的面积;2、沿着x轴或者y轴将图形分割成两个三角形;3、过图形上的点往x轴或者y轴作垂线,将图形分割成三角形和直角梯形【典型例题:】例 1.1.1如图,OAB是边长为2的等边三角形,过点A的直线与x轴交于点E (1) 求点E的坐标;(2) 求过 A、O、E三点的抛物线解析式;(3) 若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值。【答案解析】解:(1)作AFx轴于F,OF=OAcos60=1,AF=OFtan60=点A(1,)代入直线解析式,得,m=当y=0时,得x=4,点E(4,0)(2)设过A、O、E三点抛物线的解析式为y=ax2+bx+c抛物线过原点 c=0,抛物线的解析式为(3)作PGx轴于G,设P(x0,y0)S四边形OAPE=SAOF+S梯形AFGP+SPGE= 当时,S最大=【解析】(1)(2)由图可作AFx轴于F,根据直角三角形性质,用待定系数求E点坐标和的抛物线解析式;(3)再作作PGx轴于G,将四边形OAPE的面积S用x0来表示,将问题转化为求函数最值问题【针对练习:】练 1.1.1(2016苏州中考第28题)如图,直线l:y=3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax22ax+a+4(a0)经过点B(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M写出点M的坐标;将直线l绕点A按顺时针方向旋转得到直线l,当直线l与直线AM重合时停止旋转,在旋转过程中,直线l与线段BM交于点C,设点B、M到直线l的距离分别为d1、d2,当d1+d2最大时,求直线l旋转的角度(即BAC的度数)【答案解析】解:(1)令x=0代入y=3x+3,y=3,B(0,3),把B(0,3)代入y=ax22ax+a+4,3=a+4,a=1,二次函数解析式为:y=x2+2x+3;(2)令y=0代入y=x2+2x+3,0=x2+2x+3,x=1或3,抛物线与x轴的交点横坐标为1和3,M在抛物线上,且在第一象限内,0m3,过点M作MEy轴于点E,交AB于点D,由题意知:M的坐标为(m,m2+2m+3),D的纵坐标为:m2+2m+3,把y=m2+2m+3代入y=3x+3,x=,D的坐标为(,m2+2m+3),DM=m=,S=DMBE+DMOE=DM(BE+OE)=DMOB=3=(m)2+0m3,当m=时,S有最大值,最大值为;(3)由(2)可知:M的坐标为(,);过点M作直线l1l,过点B作BFl1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,BFM=90,点F在以BM为直径的圆上,设直线AM与该圆相交于点H,点C在线段BM上,F在优弧上,当F与M重合时,BF可取得最大值,此时BMl1,A(1,0),B(0,3),M(,),由勾股定理可求得:AB=,MB=,MA=,过点M作MGAB于点G,设BG=x,由勾股定理可得:MB2BG2=MA2AG2,(x)2=x2,x=,cosMBG=,l1l,BCA=90,BAC=45【解析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a的值;(2)过点M作MEy轴于点E,交AB于点D,所以ABM的面积为DMOB,设M的坐标为(m,m2+2m+3),用含m的式子表示DM,然后求出S与m的函数关系式,即可求出S的最大值,其中m的取值范围是0m3;(3)由(2)可知m=,代入二次函数解析式即可求出纵坐标的值;过点M作直线l1l,过点B作BFl1于点F,所以d1+d2=BF,所以求出BF的最小值即可,由题意可知,点F在以BM为直径的圆上,所以当点F与M重合时,BF可取得最大值考点 2 利用相似解决图形的面积问题【考点解析 :】例:如图,DE/BC,如果ADAB=k呢?求SADESABC的值。适用题型:图形中涉及平行线、相似三角形常见分割方法:1、利用平行关系或者三角形的相似,计算出对应的边长;2、根据面积之比是相似比的平方直接表示出图形的面积【典型例题:】例 2.1.1已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x2经过A、C两点,且AB=2(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=,当t为何值时,s有最小值,并求出最小值(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与ABC相似;若存在,求t的值;若不存在,请说明理由【答案解析】解:(1)由直线:y=x2知:A(2,0)、C(0,2);AB=2,OB=OA+AB=4,即 B(4,0)设抛物线的解析式为:y=a(x2)(x4),代入C(0,2),得:a(02)(04)=2,解得 a=抛物线的解析式:y=(x2)(x4)=x2+x2(2)在RtOBC中,OB=4,OC=2,则 tanOCB=2;CE=t,DE=2t;而 OP=OBBP=42t;s=(0t2),当t=1时,s有最小值,且最小值为 1(3)在RtOBC中,OB=4,OC=2,则 BC=2;在RtCED中,CE=t,ED=2t,则 CD=t;BD=BCCD=2t;以P、B、D为顶点的三角形与ABC相似,已知OBC=PBD,则有两种情况:=,解得 t=;=,解得 t=;综上,当t=或时,以P、B、D为顶点的三角形与ABC相似【解析】(1)首先根据直线AC的解析式确定点A、C的坐标,已知AB的长,进一步能得到点B的坐标;然后由待定系数法确定抛物线的解析式(2)根据所给的s表达式,要解答该题就必须知道ED、OP的长;BP、CE长易知,那么由OP=OBBP求得OP长,由CED的三角函数值可得到ED的长,再代入s的表达式中可得到关于s、t的函数关系式,结合函数的性质即可得到s的最小值(3)首先求出BP、BD的长,若以P、B、D为顶点的三角形与ABC相似,已知的条件是公共角OBC,那么必须满足的条件是夹公共角的两组对应边成比例,分两种情况讨论即可【针对练习:】练 2.1.1如图,ABC是一张直角三角形彩色纸,AC=15cm,BC=20cm若将斜边上的高CD 分成n等分,然后裁出(n1)张宽度相等的长方形纸条则这(n1)张纸条的面积和是cm2【答案解析】解:如图,ACB=90,AC=15,BC=20,AB=25,CDAB=ACBC,CD=12,斜边上的高CD分成n等分,CH=,EFAB,CEFCAB,=,即=,解得EF=25,即从上往下数,第1个矩形的长为25,同理可得从上往下数,第2个矩形的长为25,从上往下数,第(n1)个矩形的长为25,而所有矩形的宽都为12,这(n1)张纸条的面积和是=25+25+25 12=(1+2+n1)12=(cm2)故答案为【解析】先利用勾股定理计算出AB=25,再利用面积法计算出CD=12,接着证明CEFCAB,则可计算出EF=25,同理可得从上往下数,第2个矩形的长为25,从上往下数,第(n1)个矩形的长为25,且所有矩形的宽的和为12,然后把所有矩形的面积相加即可练 2.1.2已知抛物线(a0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线与抛物线的另一个交点为D(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与ABC相似,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒 个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?【答案解析】解:(1)y=a(x+3)(x1),点A的坐标为(3,0)、点B两的坐标为(1,0),直线y=x+b经过点A,b=3,y=x3,当x=2时,y=5,则点D的坐标为(2,5),点D在抛物线上,a(2+3)(21)=5,解得,a=,则抛物线的解析式为y=(x+3)(x1)=x22x+3;(2)作PHx轴于H,设点P的坐标为(m,n),当BPAABC时,BAC=PBA,tanBAC=tanPBA,即=,=,即n=a(m1),解得,m1=4,m2=1(不合题意,舍去),当m=4时,n=5a,BPAABC,=,即AB2=ACPB,42=,解得,a1=(不合题意,舍去),a2=,则n=5a=,点P的坐标为(4,);当PBAABC时,CBA=PBA,tanCBA=tanPBA,即=,=,即n=3a(m1),解得,m1=6,m2=1(不合题意,舍去),当m=6时,n=21a,PBAABC,=,即AB2=BCPB,42=,解得,a1=(不合题意,舍去),a2=,则点P的坐标为(6,),综上所述,符合条件的点P的坐标为(4,)和(6,);(3)作DMx轴交抛物线于M,作DNx轴于N,作EFDM于F,则tanDAN=,DAN=60,EDF=60,DE=EF,Q的运动时间t=+=BE+EF,当BE和EF共线时,t最小,则BEDM,y=4【解析】(1)根据二次函数的交点式确定点A、B的坐标,求出直线的解析式,求出点D的坐标,求出抛物线的解析式;(2)作PHx轴于H,设点P的坐标为(m,n),分BPAABC和PBAABC,根据相似三角形的性质计算即可;(3)作DMx轴交抛物线于M,作DNx轴于N,作EFDM于F,根据正切的定义求出Q的运动时间t=BE+EF时,t最小即可考点 3 利用铅垂高和水平宽公式求解图形的面积问题公式:S=铅垂高乘以水平宽适用题型:多用于不规则三角形或者四边形的面积计算,其中该图形有至少两个顶点在函数图象上常见分割方法:选用一条分割线作为底,分割线左右(上下)两个顶点之间的间距作为高,其面积为S=铅垂高乘以水平宽【考点解析 :】【典型例题:】例 3.1.1如图,在直角坐标系中,点A的坐标为(2,0),连结OA,将线段OA绕原点O顺时针旋转120,得到线段OB.(1) 求点B的坐标;(2) 求经过A、O、B三点的抛物线的解析式;(3) 在(2)中抛物线的对称轴上是否存在点C,使BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4) 如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么PAB是否有最大面积?若有,求出此时P点的坐标及PAB的最大面积;若没有,请说明理由.CBAOyx DBAOyxP【答案解析】解:(1)B(1,)(2)设抛物线的解析式为y=ax(x+a),代入点B(1, ),得,因此(3)如图,抛物线的对称轴是直线x=1,当点C位于对称轴与线段AB的交点时,BOC的周长最小.设直线AB为y=kx+b.所以,因此直线AB为,当x=1时,因此点C的坐标为(1,/3).(4)如图,过P作y轴的平行线交AB于D.当x=时,PAB的面积的最大值为,此时.【解析】求PAB 的面积的时候,过点P作x轴的垂线,将PAB 的面积分成左右两个三角形,以PD为底,则AB为水平宽,利用公式表示出三角形的面积是解题的关键。练 3.1.1如图1,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B。(1)求抛物线和直线AB的解析式;(2)求CAB的铅垂高CD及SCAB ;(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使SPABCAB ,若存在,求出P点的坐标;若不存在,请说明理由。 【答案解析】解:(1)设抛物线的解析式为:把A(3,0)代入解析式求得所以设直线AB的解析式为:由求得B点的坐标为 把,代入中解得:所以(2)因为C点坐标为(,4)所以当x时,y14,y22所以CD4-22(平方单位)(3)假设存在符合条件的点P,设P点的横坐标为x,PAB的铅垂高为h,则由SPAB=SCAB得化简得:解得,将代入中,解得P点坐标为【解析】过点P作x轴的垂线,利用铅垂高公式表示出PA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备故障预测与自愈-洞察及研究
- 代谢表观遗传学肿瘤研究-洞察及研究
- 工厂安全培训总结文案课件
- 手指砸伤工伤安全培训课件
- 手指点画刺猬课件
- 间充质干细胞肺修复-洞察及研究
- 化肥厂质量改进办法
- 学生食堂食物安全培训课件
- 天津市河北区2025届高三上学期期末质量检测数学试卷(含答案)
- 手抄报社团课件
- 施工现场安全监理危险源清单一览表
- GB/T 233-2000金属材料顶锻试验方法
- FZ/T 74003-2014击剑服
- 颈椎DR摄影技术-
- 功能材料概论-课件
- 一点儿有点儿课件
- 眼视光技术专业技能考核题库-眼镜定配技术模块
- 体育测量与评价-第二章-体育测量与评价的基础理论课件
- 超清地质年代表
- 铺轨工程监理规划及工作内容
- 女生青春期生理卫生知识讲座(课堂PPT)
评论
0/150
提交评论