二元一次方程复习教案.doc_第1页
二元一次方程复习教案.doc_第2页
二元一次方程复习教案.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二元一次方程组复习教案教学目标: 1、使学生准确理解二元一次方程(组)理解的概念,并熟练地运用代入消元法、加减消元法、图象法解二元一次方程组; 2、举出生活中用二元一次方程组解决问题的实例,抓住列二元一次方程组解决实际问题中的关键,找到相等关系,熟练建模; 3、进一步掌握二元一次方程与一次函数的联系。教学重点: 1、二元一次方程组的解法:代入消元法、加减消元法、图象法; 2、列二元一次方程组解决实际生活问题; 3、二元一次方程和一次函数的关系。教学难点: 1、列二元一次方程组解决实际生活问题; 2、几种数学思想化归思想、方程思想和数形结合思想。教学方法:交流讨论反逻辑性的师生主动法 一、回顾与思考 1、代入消元法、加减消元法解方程组的基本思路是什么?主要步骤有哪些?代入消元法主要步骤是:将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,将这个代数式代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程式。解这个一元一次方程。把求得的一次方程的解代入方程中,求得另一个未知数值,组成方程组的解。这种解方程组的方法称为代入消元法。简称代入法。 加减消元法主要步骤,是观察求未各数的系数的绝对值是否相同,若互为相反数就用加,若相同,就用减,达到消元目的。 练一练:(1)、已知x+3y-6=0,用含x的代数式表示y为 ,用含y的代数式表示x 为 .(2)已知 x=1 是方程组 ax+by=2 的解,则a、b的值是多少? y=1 x-by=3(3)解方程组 2x+3y+4z=128(4)在列二元一次方程组解决实际问题的过程中,你认为最关键的是什么?(5)解二元一次方程组的基本思路是什么?有哪些方法?举例说明在什么情况下采用哪一种方法更为简便,并简要阐述解二元一次方程组的过程。(6)举例说明二元一次方程与一次函数有何关系。 二、实际问题: 某商店购进一批衬衫,甲顾客以7折的优惠价格买了20件,而乙顾客以8折的优惠价格买了5件,结果商店都获得利润200元,求这批衬衫的进价是多少元?标价是多少元? 问:在这个问题你发现有哪些等量关系?这是解决问题的关键。 (1)利润=售价进价 (2)甲顾客以7折买了20件后,商店所获的利润=200元 (3)乙顾客以8折买了5件后,商店所获的利润=200元 问:若设这批衬衫的进价为X元,标价为Y元,则根据以上关系,列出方程组? 问:用什么方法解以上方程组?(可用代入消元法或加减消元法) 练习:某商店出售的某种茶壶每只定价20元,茶杯每只定价3元,该商店在营销淡季特规定一项优惠方法,即买一只茶壶赠送一只茶杯,我爸爸的单位里花了170元,买回茶壶和茶杯一共38只,问我爸的单位里买回茶壶和茶杯各多少只? 问:在以上列方程组解决实际问题中,你认为最关键的是什么?利用方程组解决实际问题中的关键是正确找出问题中的两个等量关系,列出方程组成方程组,并注意检验解的合理性。 3、解二元一次方程组的基本思路消元 解方程组 分组分别用代入消元法,加减消元法,图象法解以上方程组。三、建立体系: 通过以上几个问题的思考,形成本章知识联系图:丰富的问题情境 二元一次方程组含义 解法:代入消元法 应用 加减消元法 图象法 四、课堂练习:课本复习题A组五、小结:通过本章的学习

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论