图形的初步认识知识点-及线段习题.doc_第1页
图形的初步认识知识点-及线段习题.doc_第2页
图形的初步认识知识点-及线段习题.doc_第3页
图形的初步认识知识点-及线段习题.doc_第4页
图形的初步认识知识点-及线段习题.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

。图形的初步认识 一、本章的知识结构图一、立体图形与平面图形立体图形:棱柱、棱锥、圆柱、圆锥、球等。1、几何图形平面图形:三角形、四边形、圆等。主(正)视图-从正面看2、几何体的三视图 侧(左、右)视图-从左(右)边看俯视图-从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。(2)能根据三视图描述基本几何体或实物原型。3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。线:面和面相交的地方是线,分为直线和曲线。面:包围着体的是面,分为平面和曲面。体:几何体也简称体。(2)点动成线,线动成面,面动成体。例1 (1)如图1所示,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的物体。(2)如图2所示,写出图中各立体图形的名称。图1图2解:(1)与d类似,与c类似,与a类似,与b类似。(2)圆柱,五棱柱,四棱锥,长方体,五棱锥。例2 如图3所示,讲台上放着一本书,书上放着一个粉笔盒,指出右边三个平面图形分别是左边立体图形的哪个视图。 图3解:(1)左视图,(2)俯视图,(3)正视图练习1下图是一个由小立方体搭成的几何体由上而看得到的视图,小正方形中的数字表示该位置小立方块的个数,则从正面看它的视图为( ) 3如图,下面三个正方体的六个面按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是( )A蓝、绿、黑 B绿、蓝、黑 C绿、黑、蓝 D蓝、黑、绿4若如下平面展开图折叠成正方体后,相对面上的两个数之和为5,求xyz的值。5一个物体从不同方向看的视图如下,画出该物体的立体图形。二、直线、射线、线段(一).直线、射线、线段的区别与联系: 基本概念直线射线线段图形端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB;作直线a作射线AB作线段a;作线段AB;连接AB延长叙述不能延长反向延长射线AB延长线段AB;反向延长线段BA例4 如图所示,回答下列问题。(1)图中有几条直线?用字母表示出来;(2)图中有几条射线?用字母表示出来;(3)图中有几条线段?用字母表示出来。解:(1)图中有1条直线,表示为直线AD(或直线AB,AC,BD,BC,CD);(2)共有8条射线,能用字母表示的有射线AB,AC,AD,BC,BD,CD,不能用字母表示的有2条,(3)共有6条线段,表示为线段AB,AC,AD,BC,BD,CD。练习6、下列各直线的表示方法中,正确的是( )A直线A B直线AB C直线ab D直线Ab7、右图中有_条线段,分别表示为_。(二).直线、线段性质:经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;1、线段的性质两点的所有连线中,线段最短。简单地:两点之间,线段最短。2.画线段的方法(1)度量法(2)用尺规作图法3、线段的大小比较方法(1)度量法(2)叠合法4、点与直线的位置关系(1)点在直线上 (2)点在直线外。练习:8.把一段弯曲的公路改为直道,可以缩短路程。其理由是:( )(A)两点之间,线段最短 (B)两点确定一条直线(C)线段有两个端点 (D)线段可以比较大小9 在同一平面上的三点A,B,C,(1)过任意两点做一条直线,则可作直线的条数为 _(2)过三个已知点的直线的条数为 _解:(1)如图所示,当A,B,C三点不共线时,过其中的每两点可以画一条直线,共可画出三条直线;当A,B,C三点在一条直线上时,经过每两点画出的直线重合为一条直线。(2)过三个已知点不一定能画出直线。当三个已知点在一条直线上时,可以画出一条直线;当三个已知点不在一条直线上时,不能画出直线。(三).两点距离的定义:连接两点间的线段的长度,叫做这两点的距离。练习:10、下列说法中,正确的是( )A射线比直线短 B两点确定一条直线 C经过三点只能作一条直线 D两点间的长度叫做两点间的距离11、线段AB=9cm,C是直线AB上的一点,BC=4cm,则AC=_.(四).线段中点:把一条线段分成两条相等的线段的点叫线段中点,如图:若点C是线段AB的中点,则有(1)AC=BC= AB 或(2)AB=2AC=2BC,反之,若有(1)式或(2)式成立,亦能说明点C是线段AB的中点。(五).延长线和反向延长线:延长线段AB是指按从端点A到B的方向延长;延长线段BA是指按从端点B到A的反方向延长,这时也可以说反向延长线段AB。直线、射线没有延长线,射线可以有反向延长线。(六).关于线段的计算: 两条线段长度相等,这两条线段称为相等的线段,记作AB=CD,平面几何中线段的计算结果仍为一条线段。即使不知线段具体的长度也可以作计算。例:如图:AB+BC=AC,或说:AC-AB=BC 例5 已知线段AB=4厘米,延长AB到C,使B C=2AB,取AC的中点P,求PB的长例6、画图并计算已知线段CD,延长CD到B,使DB=05CB,反向延长CD到A,使CA=CB,若AB=12,求CD的长。练习:12、若点P是线段AB的中点,则下列等式错误的是( )AAP=PB BAB=2PB CAP=1/2 AB DAP=2PB13已知点C是线段AB的中点,点D是线段BC的中点,CD=25厘米,请你求出线段AB、AC、AD、BD的长各为多少? 练习题1 判断下列说法是否正确(1)直线AB与直线BA不是同一条直线()()用刻度尺量出直线AB的长度 ( )(3)直线没有端点,且可以用直线上任意两个字母来表示( ) (4)线段AB中间的点叫做线段AB的中点 ( )(5)取线段AB的中点M,则AB-AM=BM ( )(6)连接两点间的直线的长度,叫做这两点间的距离 ( )(7)一条射线上只有一个点,一条线段上有两个点 ( )2已知点A、B、C三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_3电筒发射出去的光线,给了我们 的形象.ABCD4如图,四点A、B、C、D在一直线上,则图中有_条线段,有_条射线;若AC=12cm,BD=8cm,且AD=3BC,则AB=_,BC=_,CD=_ _6如图,若C为线段AB的中点,D在线段CB上,则CD=_ ABCD7C为线段AB上的一点,点D为CB的中点,若AD=4,求AC+AB的长。 8把一条长24cm的线段分成三段,使中间一段的长为6cm,求第一段与第三段中点的距离。9如图,点C在线段AB上,E是AC的中点,D是BC的中点,若ED=6,则AB的长为( )1.线段AD=6cm,线段AC=BD=4cm ,E、F分别是线段AB、CD中点,求EF。FECBDA 2. 已知线段AB12cm,直线AB上有一点C,且BC6cm,M是线段AC的中点,求线段AM的长3. 在直线l上取 A,B两点,使AB=10厘米,再在l上取一点C,使AC=2厘米,M,N分别是AB,AC中点求MN的长度。4.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长5、如图,点C在线段AB上,AC = 8厘米,CB = 6厘米,点M、N分别是AC、BC的中点。(1) 求线段MN的长; (2) 若C为线段AB上任一点,满足AC + CB = a厘米,其它条件不变,你能猜想MN的长度吗?并说明理由。6、如图,已知C点为线段AB的中点,D点为BC的中点,AB10cm,求AD的长度。7、如图,是的中点, ,求线段的长图9ADCBE8、已知: B、C是线段AD上两点,且AB:BC:CD2:4:3,M是AD的中点,CD6,求线段MC的长。 9如图,点、D在线段AB 上AC6 cm,CD4 cm,AB12 cm,则图中所有线段的和是_cm10线段AB12.6 cm,点C 在BA 的延长线上,AC3.6 cm,M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论