




免费预览已结束,剩余21页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2016-2017学年湖北省襄阳市宜城市九年级(上)期中数学试卷一、选择题(本大题有10个小题,每小题3分,共30分.)1已知关于x的方程x2+3x+a=0有一个根为2,则a的值为()a5b2c2d52已知关于x的一元二次方程x2+2x(m2)=0有实数根,则m的取值范围是()am1bm1cm1dm13二次函数y=x22x+4化为y=a(xh)2+k的形式,下列正确的是()ay=(x1)2+2by=(x2)2+4cy=(x2)2+2dy=(x1)2+34有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛两场,则下列方程中符合题意的是()ax(x1)=45b x(x+1)=45c x(x1)=45dx(x+1)=455下列汽车标志中,既是轴对称图形又是中心对称图形的是()abcd6抛物线y=x2+2x+3的对称轴是()a直线x=1b直线x=1c直线x=2d直线x=27如图,在o中, =,aob=44,则adc的度数是()a44b34c22d128如图,在正方形abcd中,abe经旋转,可与cbf重合,ae的延长线交fc于点m,以下结论正确的是()aamfcbbfcfcbe=cedfm=mc9如图,o的半径为2,abc是o的内接三角形,连接ob、oc若bac与boc互补,则弦bc的长为()a4b3c2d10一次函数y=ax+b(a0)与二次函数y=ax2+bx+c(a0)在同一平面直角坐标系中的图象可能是()abcd二、填空题(本大题有5个小题,每小题3分,共15分.)11一元二次方程x2+3x4=0的两根分别为12已知x1,x2是关于x的方程x2+ax2b=0的两实数根,且x1+x2=2,x1x2=1,则a+b的值是13已知二次函数y=(x1)2+4,若y随x的增大而增大,则x的取值范围是14如图,四边形abcd内接于o,dab=120,连接oc,点p是半径oc上任意一点,连接dp,bp,则bpd可能为度(写出一个即可)15如图,rtoab的顶点a(4,8)在抛物线y=ax2上,将rtoab绕点o顺时针旋转90,得到ocd,边cd与该抛物线交于点p,则点p的坐标为16如图,已知正方形abcd的边长为6,e、f分别是ab、bc边上的点,且edf=45,将dae绕点d逆时针旋转90,得到dcm若ae=2,则fm的长为三、解答题(本大题共9个小题,计69分.)17(6分)先化简,再求值:(1),其中x2+x2=018(6分)已知关于x的一元二次方程x26x+(2m+1)=0有实数根(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x220,求m的取值范围19(6分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,abc的三个顶点的坐标分别为a(1,3),b(4,0),c(0,0)(1)画出将abc向上平移1个单位长度,再向右平移5个单位长度后得到的a1b1c1;(2)画出将abc绕原点o顺时针方向旋转90得到a2b2o;(3)在x轴上存在一点p,满足点p到a1与点a2距离之和最小,请直接写出p点的坐标20(6分)某地2014年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加2016年在2014年的基础上增加投入资金1600万元,从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?21(7分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由22(8分)正方形abcd内接于o,如图所示,在劣弧上取一点e,连接de、be,过点d作dfbe交o于点f,连接bf、af,且af与de相交于点g,求证:(1)四边形ebfd是矩形;(2)dg=be23(10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?24(10分)如图,已知abc是等腰三角形,顶角bac=(60),d是bc边上的一点,连接ad,线段ad绕点a顺时针旋转到ae,过点e作bc的平行线,交ab于点f,连接de,be,df(1)求证:be=cd;(2)若adbc,试判断四边形bdfe的形状,并给出证明25(13分)在平面直角坐标系中,现将一块等腰直角三角板abc放在第二象限,斜靠在两坐标轴上,且点a(0,2),点c(1,0),如图所示:抛物线y=ax2+ax2经过点b(1)求点b的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点p(点b除外),使acp仍然是以ac为直角边的等腰直角三角形?若存在,求所有点p的坐标;若不存在,请说明理由2016-2017学年湖北省襄阳市宜城市九年级(上)期中数学试卷(解析版)参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分.)1已知关于x的方程x2+3x+a=0有一个根为2,则a的值为()a5b2c2d5【考点】一元二次方程的解【分析】将x=2代入方程x2+3x+a=0,得46+a=0,解之可得a的值【解答】解:根据题意,将x=2代入方程x2+3x+a=0,得:46+a=0,解得:a=2,故选:b【点评】本题主要考查一元二次方程的解,掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解题的关键2已知关于x的一元二次方程x2+2x(m2)=0有实数根,则m的取值范围是()am1bm1cm1dm1【考点】根的判别式【分析】根据关于x的一元二次方程x2+2x(m2)=0有实数根,可知0,从而可以求得m的取值范围【解答】解:关于x的一元二次方程x2+2x(m2)=0有实数根,=b24ac=2241(m2)0,解得m1,故选c【点评】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,03二次函数y=x22x+4化为y=a(xh)2+k的形式,下列正确的是()ay=(x1)2+2by=(x2)2+4cy=(x2)2+2dy=(x1)2+3【考点】二次函数的三种形式【分析】利用配方法整理即可得解【解答】解:y=x22x+4=(x22x+1)+3,=(x1)2+3,所以,y=(x1)2+3故选:d【点评】本题考查了二次函数的三种形式,熟练掌握配方法是解题的关键4有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛两场,则下列方程中符合题意的是()ax(x1)=45b x(x+1)=45c x(x1)=45dx(x+1)=45【考点】由实际问题抽象出一元二次方程【分析】根据题意,可以明确列出相应的一元二次方程,本题得以解决【解答】解:由题意可得,x(x1)=45,故选a【点评】本题考查由实际问题抽象出一元二次方程,本题是一道典型的双循环问题,解题的关键是明确题意,列出相应的方程5下列汽车标志中,既是轴对称图形又是中心对称图形的是()abcd【考点】中心对称图形;轴对称图形【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:a、是轴对称图形,不是中心对称图形,故本选项错误;b、既不是中心对称图形,也不是轴对称图形,故本选项错误;c、不是轴对称图形,是中心对称图形,故本选项错误;d、是中心对称图形,也是轴对称图形,故本选项正确故选d【点评】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合6抛物线y=x2+2x+3的对称轴是()a直线x=1b直线x=1c直线x=2d直线x=2【考点】二次函数的性质【分析】先把一般式化为顶点式,然后根据二次函数的性质确定抛物线的对称轴方程【解答】解:y=x2+2x+3=(x+1)2+2,抛物线的对称轴为直线x=1故选b【点评】本题考查了二次函数的性质:对于二次函数y=ax2+bx+c(a0),它的顶点坐标是(,),对称轴为直线x=7如图,在o中, =,aob=44,则adc的度数是()a44b34c22d12【考点】圆周角定理;圆心角、弧、弦的关系【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得adc=aob,进而可得答案【解答】解:在o中, =,aob=44,adc=22,故选:c【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半8如图,在正方形abcd中,abe经旋转,可与cbf重合,ae的延长线交fc于点m,以下结论正确的是()aamfcbbfcfcbe=cedfm=mc【考点】旋转的性质;正方形的性质【分析】依据旋转的性质可知bae=bcf,然后可证明bfc+bae=90,从而可得到问题的答案【解答】解:abe经旋转,可与cbf重合,bae=bcf,abe=cbfbcf+bfc=90bfc+bae=90fma=90amfc故选:a【点评】本题主要考查的是旋转的性质,证得bfc+bae=90是解题的关键9如图,o的半径为2,abc是o的内接三角形,连接ob、oc若bac与boc互补,则弦bc的长为()a4b3c2d【考点】三角形的外接圆与外心;垂径定理【分析】作弦心距od,先根据已知求出boc=120,由等腰三角形三线合一的性质得:doc=boc=60,利用30角所对的直角边是斜边的一半可求得od的长,根据勾股定理得dc的长,最后利用垂径定理得出结论【解答】解bac与boc互补,bac+boc=180,bac=boc,boc=120,过o作odbc,垂足为d,bd=cd,ob=oc,ob平分boc,doc=boc=60,ocd=9060=30,在rtdoc中,oc=2,od=1,dc=,bc=2dc=2,故选c【点评】本题考查了圆周角定理、垂径定理及等腰三角形三线合一的性质,熟练掌握垂径定理是关键,本题中利用圆周角定理中圆周角与圆心角的关系得出角的度数,从而得到odc是30的直角三角形,根据30角所对的直角边是斜边的一半得到od的长,从而得出弦bc的长10一次函数y=ax+b(a0)与二次函数y=ax2+bx+c(a0)在同一平面直角坐标系中的图象可能是()abcd【考点】二次函数的图象;一次函数的图象【分析】根据一次函数的性质和二次函数的性质,由函数图象可以判断a、b的正负情况,从而可以解答本题【解答】解:在a中,由一次函数图象可知a0,b0,二次函数图象可知,a0,b0,故选项a错误;在b中,由一次函数图象可知a0,b0,二次函数图象可知,a0,b0,故选项b错误;在c中,由一次函数图象可知a0,b0,二次函数图象可知,a0,b0,故选项c错误;在d中,由一次函数图象可知a0,b0,二次函数图象可知,a0,b0,故选项d正确;故选d【点评】本题考查二次函数的图象和一次函数的图象,解题的关键是明确一次函数和二次函数的性质二、填空题(本大题有5个小题,每小题3分,共15分.)11一元二次方程x2+3x4=0的两根分别为1和4【考点】解一元二次方程-因式分解法【分析】首先把方程左边分解因式,进而可得两个一元一次方程x+4=0或x1=0,再解即可【解答】解:x2+3x4=0,(x+4)(x1)=0,x+4=0或x1=0,解得:x1=4,x2=1,故答案为:1和4【点评】此题主要考查了因式分解法解一元二次方程,因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)12已知x1,x2是关于x的方程x2+ax2b=0的两实数根,且x1+x2=2,x1x2=1,则a+b的值是【考点】根与系数的关系【分析】由根与系数的关系结合x1+x2=2、x1x2=1,即可得出关于a、b的一元一次方程,解方程即可得出a、b的值,将其代入a+b即可得出结论【解答】解:x1,x2是关于x的方程x2+ax2b=0的两实数根,x1+x2=a=2,x1x2=2b=1,a=2,b=,a+b=2=故答案为:【点评】本题考查了根与系数的关系,根据根与系数的关系分别找出关于a、b的一元一次方程是解题的关键13已知二次函数y=(x1)2+4,若y随x的增大而增大,则x的取值范围是x1【考点】二次函数的性质【分析】由解析式可求得抛物线的对称轴,再利用增减性可求得答案【解答】解:y=(x1)2+4,抛物线开口向上,对称轴为x=1,当x1时,y随x的增大而增大,故答案为:x1【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(xh)2+k中,对称轴为x=h,顶点坐标为(h,k)14如图,四边形abcd内接于o,dab=120,连接oc,点p是半径oc上任意一点,连接dp,bp,则bpd可能为80度(写出一个即可)【考点】圆内接四边形的性质【分析】连接ob、od,根据圆内接四边形的性质求出dcb的度数,根据圆周角定理求出dob的度数,得到dcbbpddob,进而可得答案【解答】解:连接ob、od,四边形abcd内接于o,dab=120,dcb=180120=60,由圆周角定理得,dob=2dcb=120,dcbbpddob,即60bpd120,bpd可能为80,故答案为:80【点评】此题主要考查了圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键15如图,rtoab的顶点a(4,8)在抛物线y=ax2上,将rtoab绕点o顺时针旋转90,得到ocd,边cd与该抛物线交于点p,则点p的坐标为(2,4)【考点】二次函数图象与几何变换【分析】先根据待定系数法求得抛物线的解析式,然后根据题意求得d(0,4),且dcx轴,从而求得p的纵坐标为4,代入求得的解析式即可求得p的坐标【解答】解:rtoab的顶点a(4,8)在抛物线y=ax2上,8=16a,解得a=,抛物线为y=x2,点a(4,8),b(4,0),ob=4,将rtoab绕点o顺时针旋转90,得到ocd,d点在y轴上,且od=ob=4,d(0,4),dcod,dcx轴,p点的纵坐标为4,代入y=x2,得4=x2,解得x=2,p(2,4)故答案为(2,4)【点评】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,根据题意求得p的纵坐标是解题的关键16如图,已知正方形abcd的边长为6,e、f分别是ab、bc边上的点,且edf=45,将dae绕点d逆时针旋转90,得到dcm若ae=2,则fm的长为5【考点】正方形的性质;全等三角形的判定与性质;勾股定理的应用【分析】由旋转可得de=dm,edm为直角,可得出edf+mdf=90,由edf=45,得到mdf为45,可得出edf=mdf,再由df=df,利用sas可得出三角形def与三角形mdf全等,由全等三角形的对应边相等可得出ef=mf;则可得到ae=cm=2,正方形的边长为6,用abae求出eb的长,再由bc+cm求出bm的长,设ef=mf=x,可得出bf=bmfm=bmef=8x,在直角三角形bef中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为fm的长【解答】解:dae逆时针旋转90得到dcm,fcm=fcd+dcm=180,f、c、m三点共线,de=dm,edm=90,edf+fdm=90,edf=45,fdm=edf=45,在def和dmf中,defdmf(sas),ef=mf,设ef=mf=x,ae=cm=2,且bc=6,bm=bc+cm=8,bf=bmmf=bmef=8x,eb=abae=4,在rtebf中,由勾股定理得eb2+bf2=ef2,即42+(8x)2=x2,解得:x=5,fm=5故答案为:5【点评】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理的综合应用解题的关键是掌握旋转前后图形的对应关系,注意掌握数形结合思想与方程思想的应用三、解答题(本大题共9个小题,计69分.)17先化简,再求值:(1),其中x2+x2=0【考点】解一元二次方程-因式分解法;分式的化简求值【分析】先化简分式可得原式=,再解方程可得x1=1,x2=2(不合题意,舍去),代入计算即可【解答】解:原式=,解方程x2+x2=0,得x1=1,x2=2(不合题意,舍去),原式=【点评】本题主要考查分式的化简求值及解方程的能力,熟练掌握分式的运算顺序和法则及解方程的方法是解题的关键18已知关于x的一元二次方程x26x+(2m+1)=0有实数根(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x220,求m的取值范围【考点】根与系数的关系;根的判别式【分析】(1)根据判别式的意义得到=(6)24(2m+1)0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x220得到2(2m+1)+620,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围【解答】解:(1)根据题意得=(6)24(2m+1)0,解得m4;(2)根据题意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x220,所以2(2m+1)+620,解得m3,而m4,所以m的范围为3m4【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a0)的两根时,x1+x2=,x1x2=也考查了根与系数的关系19如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,abc的三个顶点的坐标分别为a(1,3),b(4,0),c(0,0)(1)画出将abc向上平移1个单位长度,再向右平移5个单位长度后得到的a1b1c1;(2)画出将abc绕原点o顺时针方向旋转90得到a2b2o;(3)在x轴上存在一点p,满足点p到a1与点a2距离之和最小,请直接写出p点的坐标【考点】作图-旋转变换;轴对称-最短路线问题;作图-平移变换【分析】(1)分别将点a、b、c向上平移1个单位,再向右平移5个单位,然后顺次连接;(2)根据网格结构找出点a、b、c以点o为旋转中心顺时针旋转90后的对应点,然后顺次连接即可;(3)利用最短路径问题解决,首先作a1点关于x轴的对称点a3,再连接a2a3与x轴的交点即为所求【解答】解:(1)如图所示,a1b1c1为所求做的三角形;(2)如图所示,a2b2o为所求做的三角形;(3)a2坐标为(3,1),a3坐标为(4,4),a2a3所在直线的解析式为:y=5x+16,令y=0,则x=,p点的坐标(,0)【点评】本题考查了利用旋转和平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键20某地2014年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加2016年在2014年的基础上增加投入资金1600万元,从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?【考点】一元二次方程的应用【分析】设年平均增长率为x,根据:2014年投入资金给(1+增长率)2=2016年投入资金,列出方程组求解可得【解答】解:设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=2.5(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%【点评】本题主要考查一元二次方程的应用,由题意准确抓住相等关系并据此列出方程是解题的关键21某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由【考点】二次函数的应用;一元二次方程的应用【分析】(1)根据题意得方程求解即可;(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(302x)=2x2+30x,根据二次函数的性质求解即可【解答】解:(1)根据题意得:(302x)x=72,解得:x=3或x=12,302x18,x6,x=12;(2)设苗圃园的面积为y,y=x(302x)=2x2+30x=2(x)2+,a=20,苗圃园的面积y有最大值,当x=时,即平行于墙的一边长158米,y最大=112.5平方米;6x11,当x=11时,y最小=88平方米【点评】此题考查了二次函数、一元二次方程、一元二次不等式的实际应用问题解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可22正方形abcd内接于o,如图所示,在劣弧上取一点e,连接de、be,过点d作dfbe交o于点f,连接bf、af,且af与de相交于点g,求证:(1)四边形ebfd是矩形;(2)dg=be【考点】正方形的性质;矩形的判定;圆周角定理【分析】(1)直接利用正方形的性质、圆周角定理结合平行线的性质得出bed=bad=90,bfd=bcd=90,edf=90,进而得出答案;(2)直接利用正方形的性质的度数是90,进而得出be=df,则be=dg【解答】证明:(1)正方形abcd内接于o,bed=bad=90,bfd=bcd=90,又dfbe,edf+bed=180,edf=90,四边形ebfd是矩形;(2)正方形abcd内接于o,的度数是90,afd=45,又gdf=90,dgf=dfg=45,dg=df,又在矩形ebfd中,be=df,be=dg【点评】此题主要考查了正方形的性质以及圆周角定理和矩形的判定等知识,正确应用正方形的性质是解题关键23(10分)(2016丹东)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?【考点】二次函数的应用【分析】(1)函数的表达式为y=kx+b,把点(12,74),(28,66)代入解方程组即可(2)列出方程解方程组,再根据实际意义确定x的值(3)构建二次函数,利用二次函数性质解决问题【解答】解:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,该函数的表达式为y=0.5x+80,(2)根据题意,得,(0.5x+80)(80+x)=6750,解得,x1=10,x2=70投入成本最低x2=70不满足题意,舍去增种果树10棵时,果园可以收获果实6750千克(3)根据题意,得w=(0.5x+80)(80+x) =0.5 x2+40 x+6400=0.5(x40)2+7200a=0.50,则抛物线开口向下,函数有最大值当x=40时,w最大值为7200千克当增种果树40棵时果园的最大产量是7200千克【点评】本题考查二次函数的应用、一次函数的应用、一元二次方程等知识,解题的关键是熟练掌握待定系数法,学会构建二次函数解决实际问题中的最值问题,属于中考常考题型24(10分)(2014莱芜)如图,已知abc是等腰三角形,顶角bac=(60),d是bc边上的一点,连接ad,线段ad绕点a顺时针旋转到ae,过点e作bc的平行线,交ab于点f,连接de,be,df(1)求证:be=cd;(2)若adbc,试判断四边形bdfe的形状,并给出证明【考点】全等三角形的判定与性质;菱形的判定;旋转的性质【分析】(1)根据旋转可得bae=cad,从而sas证明acdabe,得出答案be=cd;(2)由adbc,sas可得acdabeabd,得出be=bd=cd,ebf=dbf,再由efbc,dbf=efb,从而得出ebf=efb,则eb=ef,证明得出四边形bdfe为菱形【解答】证明:(1)abc是等腰三角形,顶角bac=(60),线段ad绕点a顺时针旋转到ae,ab=ac,bae=cad,在ac
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025湖南张家界市人力资源和社会保障局招聘公益性岗位人员2人模拟试卷及答案详解(易错题)
- 2025辽渔集团有限公司人员模拟试卷及答案详解(典优)
- 2025广西南宁市人民路东段小学春季学期教师招聘1人考前自测高频考点模拟试题及一套完整答案详解
- 2025年河北承德医学院附属医院招聘技师岗工作人员7名考前自测高频考点模拟试题及完整答案详解一套
- 2025国家基础地理中心招聘工作人员(北京)考前自测高频考点模拟试题及参考答案详解1套
- 2025福建福州市罗源县卫健系统事业单位招聘编内卫技人员41人考前自测高频考点模拟试题及一套完整答案详解
- 2025年德州庆云县面向省属公费师范生(63人)模拟试卷及参考答案详解
- 2025年阜阳颍州区选调区内乡镇在编在岗教师60人模拟试卷附答案详解(模拟题)
- 2025河南科技职业大学心理健康教育中心招聘教师8人考前自测高频考点模拟试题有完整答案详解
- 2025辽宁抚顺高新热电有限责任公司招聘专业技术人员的二次模拟试卷及参考答案详解1套
- 2025-2030年矿山机械行业市场深度分析及前景趋势与投资研究报告
- 设备泄漏挥发性有机物排放控制技术规范
- 粉体团聚现象控制-洞察及研究
- 《慢性伤口治疗与护理》课件
- 《冠心病合并2型糖尿病患者的血糖管理专家共识(2024版)》解读
- 医疗AI发展中的伦理问题及应对策略
- 车工多选考试题及答案
- 植入式给药装置护理技术(输液港护理团标) 课件
- 支部三会一课记录范文
- 2025《导游业务》高分必会试题库1000题-选择600题
- 北京建工集团合同范本
评论
0/150
提交评论