




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.3.1二元一次不等式(组)与平面区域知识与技能:1. 了解从实际情境中抽象出二元一次不等式(组)的模型过程。2. 理解二元一次不等式(组)的解集的概念。3. 了解二元一次不等式(组)的几何意义,理解(区域)边界的概念及实线、虚线、边界的含义。4.会用二元一次不等式(组)表示平面区域,能画出给定不等式(组)表示的平面区域。过程与方法:1.通过教师几何画板画板的演示,直观地了解二元一次不等式(组)表示的图形。2.通过对二元一次不等式的几何意义的探究,渗透数形结合数学思想方法,培养学生类比、观察、归纳、抽象概括的能力.情感态度与价值观:在知识的探究过程中培养学生细心观察、认真分析的良好思维习惯,让学生感知从具体到抽象,从特殊到一般的认知过程,形成探究能力。2. 学习内容与重难点分析不等关系与相等关系都是客观事物的基本关系,不等式则是刻画现实世界中这些不等关系的数学模型,是进行数学研究、解决许多实际问题的数学工具,因而关于不等式的知识是高中数学学习的重要内容。本节课是不等式的第五大节的第一课时,通过探究二元一次不等式的解集的几何意义,了解不等式是刻画区域的重要工具,进而介绍二元一次不等式(组)所表示的平面区域。通过本节课的学习为后面寻求“最优解”的线型规划问题奠定基础。在本节课的学习过程中,使学生体会到数形结合的数学思想,发展学生应用数学的意识;同时让学生进行数学探究,体验知识的形成、应用过程,尝试运用特殊到一般,在由一般在回归到特殊的解决问题的思维方法。学生在之前的学习中已经学习了不等式的一些知识,并且知道了二元一次方程的解在平面直角坐标系中的图像是一条直线,通过类比的思维方式就可引入本节的教学。项目内容应对措施教学重点掌握二元一次不等式的几何意义,会用二元一次不等式(组)表示平面区域.借助几何画板的作图、测量、变换、动画、跟踪、演示等功能,学生从中可以直观、动态、全面地观察各个情况下特殊点的特性,概括共性,发展思维教学难点:准确画出二元一次不等式(组)所表示平面区域;数形结合思想将思想融入在题目的讲解中二、学习者特征分析(说明学生的已有知识基础、学习习惯等信息)本节课是在一元二次不等式及解法的基础上学习的另一种不等关系的模型,通过实例一步步引出用出用平面区域表示二元一次不等式(组)的方法,在这个过程中,最重要的是数形结合思想和“解析法”的渗透,这是学生不太熟悉的,因此,采取启发、探究结合的教学方法,学生采用小组协作的学习方法。教学环节知识点与教学内容教师活动学生活动设计意图讲授新课,给出定义2二元一次不等式和二元一次不等式组的定义二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合.教师结合学生列出的关系式给出二元一次不等式和二元一次不等式组的相关概念。(1)二元一次不等式(2)二元一次不等式组(3)二元一次不等式(组)的解集(4)二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:学生思考交流二元一次不等式的解集是什么?二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系是什么?通过实例抽象出二元一次不等式的定义,进一步得“有序数对”与点集对应,激活学生的思维,体会数学逻辑思维,为后面运用作准备。师生互动,探究新知3.探究二元一次不等式(组)的解集表示的图形(1)回忆、思考回忆:初中一元一次不等式(组)的解集所表示的图形数轴上的区间思考:在直角坐标系内,二元一次不等式(组)的解集表示什么图形?(2)探究先研究具体的二元一次不等式x-y6的解集所表示的图形.教师用ppt展示在平面直角坐标系内直线x-y=6,师生共同讨论平面内所有的点被直线分成三类:第一类:在直线x-y=6上的点;第二类:在直线x-y=6左上方的区域内的点;第三类:在直线x-y=6右下方的区域内的点.请同学们完成课本第83页的表格,并思考:当点a与点p有相同的横坐标时,它们的纵坐标有什么关系?根据此说说,直线x-y=6左上方点的坐标与不等式x-y6有什么关系?直线x-y=6右下方点的坐标呢?(3)结论:二元一次不等式ax+by+c0在平面直角坐标系中表示直线ax+by+c=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)4二元一次不等式表示哪个平面区域的判断方法由于对在直线ax+by+c=0同一侧的所有点(),把它的坐标()代入ax+by+c,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从ax0+by0+c的正负即可判断ax+by+c0表示直线哪一侧的平面区域.(特殊地,当c0时,常把原点作为此特殊点)教师给出相关的一些定义后,引导学生研究二元一次不等式在直角坐标平面上表示的平面区域。教师提出问题,引导学生思考,回答问题,进行合理的猜想:“同侧同号”。教师引导学生运用联系、转化的方法将点与直线上的点联系起来,学生讨论得到证明方法,完成对于猜想的逻辑证明。教师给出(3)结论:二元一次不等式ax+by+c0在平面直角坐标系中表示直线ax+by+c=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)4二元一次不等式表示哪个平面区域的判断方法由于对在直线ax+by+c=0同一侧的所有点(),把它的坐标()代入ax+by+c,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从ax0+by0+c的正负即可判断ax+by+c0表示直线哪一侧的平面区域.(特殊地,当c0时,常把原点作为此特殊点)学生给出验证方法,教师通过多媒体进行演示,验证猜想。学生思考、讨论、交流,达成共识:在平面直角坐标系中,以二元一次不等式x-y6的解为坐标的点都在直线x-y=6的左上方;反过来,直线x-y=6左上方的点的坐标都满足不等式x-y6.因此,在平面直角坐标系中,不等式x-y6表示直线x-y=6右下方的区域;如图.直线叫做这两个区域的边界通过前面的学习,学生可以很快把二元一次不等式解集引到平面区域上。充分发挥学生的自主性和作为教学主体的主动性,培养学生自己解决问题的能力。概念辨析,应用举例例1 画出不等式表示的平面区域.例2 用平面区域表示.不等式组的解集.教师归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法.特殊地,当时,常把原点作为此特殊点.教师归纳:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.学生完成幻灯片练习,巩固通过例题进一步理解和巩固所学的判断方法,掌握画出二元一次不等式(组)表示的区域的判断方法。由二元一次不等式到不等式组的设计,由浅入深,由易到难,便于学生的接受课堂小结1.二元一次不等式表示的平面区域二元一次不等式表示哪个平面区域的判断方法2.从实际问题抽象出二元一次不等式(组)并画出所表示平面区域教师设问:(1)学习了哪些内容?(2)学到了哪些研究问题的方法?教师指导,并给出完整小结学生思考,总结,并发表自己的意见培养学生反思及归纳能力布置作业课本p80 习题3.2 a组3,4,5 b组3,4教学反思1.本节课采用学生是主体,教师围绕着学生展开的教学。在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。这节课让学生从实例出发,思维一步步的很自然的引到今天的重点上,让学生在这过程中感受数学的逻辑和严谨。2.在教学中培养学生从特殊到一般的能力及归纳总结的能力。3.在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幕墙材料性能检测与评估技术方案
- 专业能力评估题库及答案
- 广东省佛山市三水区2023-2024学年高一下学期期中考试语文考试题目及答案
- 数字经济产业园建设项目建筑工程方案
- 房屋建筑施工现场设备与工具管理方案
- 离婚协议彩礼退还与个人财产分割合同范本
- 离婚协议书多语种专业翻译与本地化合同
- 物业租赁合同范本:包含设施更新改造协议
- 私立幼儿园教师聘用合同中的师德师风建设协议
- 离婚诉讼财产分割与子女抚养权法律援助合同
- DLT 5035-2016 发电厂供暖通风与空气调节设计规范
- 新药研究与开发技术 课件2.新药的发现研究
- 销售合规风险管理制度
- 药房员工销售培训
- 盾构施工安全管理
- 职场动物进化手册
- 警校联动方案
- 2025中国农业银行贷款合同
- 青少年脊柱侧弯预防
- 2025年静脉输液考试题及答案2024
- 10 ai ei ui 教学设计-2024-2025学年语文一年级上册统编版
评论
0/150
提交评论