谈谈平面图形的重心.doc_第1页
谈谈平面图形的重心.doc_第2页
谈谈平面图形的重心.doc_第3页
谈谈平面图形的重心.doc_第4页
谈谈平面图形的重心.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

谈谈平面图形的重心宝坻三中 杨春来在新人教版八年级“课题学习 重心”一节,在教学中学生通过实验很容易得到:线段的重心是线段的中点;平行四边形的重心是它的对角线的交点。通过悬挂法又可以得到三角形的重心是它的三条中线的交点。而对于任意多边形的重心也可以用悬挂法得到。问题是,用悬挂法无法找出课本上或作业本上多边形的重心。怎么画出课本上或作业本上多边形的重心呢?课本一开始就告诉我们:“在一块均匀的木板上,找到一个点,如果用一个手指顶住这点,木板会保持平衡,这个平衡点就是这块木板的重心。”其实找重心的问题就是找平衡点的问题。由平衡我们自然可以想到杠杆原理,想到阿基米德。阿基米德在论平面图形的平衡一书中最早提出了杠杆原理。怎样使杠杆保持平衡?阻力支点到阻力作用线的距离=动力支点到动力作用线的距离 ,即 阻力阻力臂=动力动力臂 ,即F1L1=F2L2。动力作用点、阻力作用点和支点在同一直线上。我们以四边形ABCD为例来研究如何找多边形的重心。重心就是平衡点,也就是杠杆原理中的支点。如果我们把四边形ABCD的木板支起来,保持平衡,那么支点周围一定存在着很多对“动力作用点和阻力作用点”,并且这个支点一定在连接两个作用点的线段上。我们不妨先连接四边形的一条对角线,把四边形ABCD分成两个三角形,分别作出它们的重心G1,G2,并把这两个重心连起来,得到线段G1G2;再连接四边形的另一条对角线,再把四边形ABCD分成两个三角形,分别作出它们的重心G3,G4,再把这两个重心连起来。得到线段G3G4;线段G1G2与线段G3G4的交点就是四边形ABCD的重心。可见:GG1*ABC的面积=GG2*ACD的面积,GG3*ABD的面积=GG4*BCD的面积。木板的面积*厚度h*密度就是木板的重量,由于木板质地相同即密度均为,薄厚均匀即厚度均为h,因此上面的两个等式就可以转化为GG1*ABC木板的重力=GG2*ACD木板的重力,GG3*ABD木板的重力=GG4*BCD木板的重力。所以我们用手指顶住G点,四边形ABCD木板就能平衡了。我们改变一下四边形ABCD的形状,再看看类似的,我们可以把任何多边形分成两部分,分别找出它们的重心,并把它们连起来;再把这个多边形分成两部分,分别找出它们的重心,并把它们连起来。这两条连线的交点就是这个多边形的重心。在教学过程中,我们发现:因为过平行四边形重心的任意直线可以把这个平行四边形面积两等分;三角形的中线把三角形面积两等分,所以一些同学就认为:过几何图形重心的直线都能把几何图形面积两等分。其实这是错误的。请看:下图G是三角形ABC的重心,直线EF把三角形ABC分成两部分。我们知道:过梯形中位线中点的直线把梯形面积两等分。显然梯形的重心不是梯形中位线中点,应该在它下方,在两底中点连线上。在教学过程中,我们还发现:因为平行四边形顶点与重心的连线把平行四边形面积四等分;三角形顶点与重心的连线把三角形面积三等分。所以一些学生就认为多边形的顶点与重心的连线都能把多边形面积等分。其实这也是不正确的。请看下面的实验: 在教学中,我们应鼓励学生大胆的猜想,更应该鼓励他们去验证和证明自己的猜想。使学生逐步掌握

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论