已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用相同正多边形拼地板一、教学目标1、知识目标:让学生通过自主的实践与探索,发现并理解正多边形能够铺满地面的道理。2、能力目标:通过数学实验的操作与探索,力图改变学生的学习方式,让学生自主探索、合作学习。 3、德育目标:关注学生的情感体验,让学生感受到数学的美,认识到数学的价值。让学生在数学实验过程中体验合作与成功的喜悦,增强学生对数学的好奇心和求知欲。二、教学重难点1、重点:通过学生亲自操作使学生发现能拼成一个平面图形的关键是某一点处各多边形的内角和为360。2、难点:寻找用哪几种正多边形能铺满地板。三、教学过程【讲述】随着现在生活水平的提高 ,对家庭居室进行装修成了许多人热衷的话题。装修房屋不仅仅是花多少钱的问题,更重要的是良好的设计和构思,这就需要有较高的艺术欣赏能力和较好的数学基础。瓷砖是生活中常见的装饰材料,你见过哪些形状的瓷砖?它们的形状有什么特点呢?【展示】用各种多边形瓷砖铺地板的图片。这些瓷砖是怎么铺设的?一点空隙也没有!你知道瓷砖能铺满地面的奥秘吗?【生】不知道【师】想不想学?【生】想学【师】今天我们一起来学习“用相同正多边形拼地板”。 设计意图 :以生活中的瓷砖装修图片来创设情境,使学生感受到数学来源于生活而应用于生活。【师】首先回顾:铺设地板的要求是什么?【生】铺设地板的要求:不留下一丝空白;不相互重叠。【设疑】这要求与正多边形的哪些量有关?是边长?还是内角?带着这个疑问,我们一起来探讨。【回顾】什么是正多边形?如果多边形的各边都相等,各内角也都相等,那么就称它为正多边形。1、n 边形的内角和公式 :(n-2) 180外角和 :3602、正多边形每个内角 【师】根据公式算一算,填写下表。当n3、4、5、6 时,正多边形的内角和、每个内角的度数分别是多少?【问题】小华的家里装修,打算用同一种正多边形的地砖来铺满整个地面,可是她想来想去不知道该选用哪种图形的好。你能帮助小华解决这个问题吗? 设计意图 :通过生活中的实际问题创设问题情境,提高学生研究问题的兴趣,激发学生探索新知的欲望,使学生进一步理解数学与现实生活的密切联系。【师】我们常见的正多边形有哪些?【生】有正三角形、正四边形、正五边形、正六边形、正八边形 【师】你能用这些正多边形的瓷砖铺满地板吗?从中你能发现什么问题?得出什么结论?【活动探究】学生拼图活动正3边形: 正4边形: 正5边形: 正6边形: 正8边形: 设计意图 :让学生进行数学实验和自主探索,通过动手、动脑的操作实验,在一种浓厚的探究气氛中体验数学、发现一些数学现象或规律,并尝试解释原因,达到“知其然且知其所以为然”。【思考】通过前面的拼图你已经知道了,用正三角形、正四边形、正六边形能铺满平面,而正五边形、正八边形却不能铺满平面,为什么?【想一想】用同一种正多边形作平面铺设,需要满足什么条件?【演示】多媒体演示拼地板的过程正边形每个内角的度数围绕一点拼在一起的正多边形个数每个内角的度数与360的关系结论3606660= 360能铺满4904490= 360能铺满510833108360不能铺10844108360不能铺612033120= 360能铺满813522135 360不能能铺 设计意图 :教师用多媒体演示拼地板的过程,让学生更加直观的认识、理解正多边形能否铺满地面与内角的大小有关的道理。动手操作发现的结果只是一种感性认识,引导学生能借助所学的数学知识,通过准确的计算来验证,使学生的认知水平初步上升到理性阶段。【讲述】从这个表格中,你能总结出铺满平面的正多边形要满足的条件吗?【归纳】结论1 :使用给定的某种正多边形,当围绕一点拼在一起的几个内角和加在一起恰好组成一个周角(360)时,就能拼成一个平面图形。【例题】为什么正七、正十、正二十边形不能铺满平面?分析:一个正多边形能不能铺满平面,只要看周角360O能否被一个内角度数整除,若能整除,则能铺满平面;若不能整除,则不能铺满平面。解:1、正七边形每个内角为 ,又因为周角360O不能被 整除,所以正七边形不能铺满平面; 2、正十边形每个内角为144O,又因为周角360O不能被144O整除,所以正十边形不能铺满平面;3、正二十边形每个内角为162O,又因为周角360O不能被162O整除,所以正二十边形不能铺满平面。【归纳】结论2 :如果一个正多边形可以铺满平面,那么这个正多边形的每个内角一定是360的约数。 换句话说: 360一定是这个正多边形每个内角的整数倍。【板演】符合这些规律的正多边形有哪些呢?数学模型:正多边形个数正多边形一个内角度数 = 360这就说明:当 ,即 为正整数时,用这样的正n边形就可以铺满平面。探究: , n 只能是哪些数? 3、4、6。 所以能用同一种正多边形拼满平面的只有:正三角形、正四边形、正六边形。 设计意图 :通过恰当地设置未知数,得到一个只与边数有关的代数式。从原来根据角来判定转化为根据边来判定,使问题进一步得到抽象概括。这样可以很自然地引导学生将经验上升到理论,从而可以更好的指导实践。【学生拼图】剪出一些形状、大小都一样的四边形,拼拼看,能否铺满平面 ? 【师】通过拼图发现,任何一种四边形,只要形状完全相同都能够铺满平面,为什么?能用我们刚才所学的知识来解释吗?【归纳】结论3 :不规则四边形能用来铺满地板的道理是:“任意四边形(指凸四边形)内角之和都等于360。” 因此,不管切下的四边形怎样歪七扭八 ,只要形状完全相同,4块相拼就能凑成360,而且总能找到等长的边相接,使砖与砖之间不留缝隙。【思考】上面我们学习的是用同一种正多边形铺地板,而用两种正多边形组合在一起也能铺满地板,这是为什么?这和它们的角度有什么关系吗?思考题:把相邻两行正三角形分开,添一行正方形,得到右图。它表明把正三角形和正方形结合在一起也能铺满地面,为什么?【师】三种或三种以上的正多边形是不是也能铺满平面?下节课我们接着继续探讨。 设计意图 :在本节“只用一种正多边形进行平面铺设”的基础上,留给学生合作探究能否用两种或两种以上的正多边形进行平面铺设。“让学生带着疑问走进课堂,带着更多更高层次的疑问离开课堂”。【小结】1、通过实验与探究,掌握了能用同一种正多边形拼满地板的正多边形只有正三角形 、 正四边形、正六边形 。2、正多边形个数正多边形内角度数 = 360当 为正整数时,用这样的正n边形就
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八上物理八年级物理上册第六章质量与密度密度与社会生活导学案公开课教案(2025-2026学年)
- 鲁科版英语四年级上册教案(2025-2026学年)
- 统编部编三下语文方帽子店名师教学设计公开课教案教学设计公开课教案教学设计(2025-2026学年)
- 阜新蒙古族自治县四中七年级生物上册绿色植物与生物圈的水循环教案新人教版(2025-2026学年)
- 急性感染的检测指标概要教案(2025-2026学年)
- 高中区域地理地图省公共课全国赛课教案(2025-2026学年)
- 幼儿教育小班上学期科学教案颜色宝宝对对碰(2025-2026学年)
- 蝉共课时教案(2025-2026学年)
- 三年级数学上册加减混合教案冀教版(2025-2026学年)
- 米跑体育教案(2025-2026学年)
- 公司电动车车棚管理制度
- 突发公共事件对转化进程的冲击效应-洞察阐释
- 非标自动化公司技术部管理制度
- 中医药健康知识讲座课件
- 2025年房地产经纪协理之房地产经纪操作实务押题练习试题B卷含答案
- 重庆重庆市水产科学研究所招聘5人笔试历年参考题库附带答案详解
- 《大学生职业发展与就业指导(第3版)》课件第九章:职场小白蜕变指南学生到职业人的角色转变
- 海龟汤题目和答案(100题)
- 2025焊工安全考试题库及答案书
- 《上市公司合规要素》课件
- 股份占比合同协议书范本
评论
0/150
提交评论