手持式压力检测仪器设计.doc_第1页
手持式压力检测仪器设计.doc_第2页
手持式压力检测仪器设计.doc_第3页
手持式压力检测仪器设计.doc_第4页
手持式压力检测仪器设计.doc_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

J I A N G S U U N I V E R S I T Y本 科 毕 业 论 文 手持式压力检测仪器设计Hand-heldpressuretestequipment design学院名称: 电气信息工程学院 专业班级: 电气0704班 学生姓名: 陈麟骅 指导教师姓名: 陈坤华 指导教师职称: 教授 年 月摘要 随着微电子技术和信息技术的发展,自动检测技术已成为一些发达国家的最重要的热门技术之一。在现代工业、农业、国防、交通、医疗、科研等各行业,检测技术的作用越来越大,检测设备就像神经和感官,源源不断地向人们传输各种有用的信息。特别是压力参数的自动检测、报警与控制,更是备受人们的关注。尽管近年来对该方面的研究与开发已取得一定成果,但远远不能满足实际需求,尤其是低功耗多路压力检测技术更需急待发展。 本文对智能压力检测系统的理论及其应用进行了深入的研究,提出一种新型智能压力检测系统的结构,并对其智能化功能、硬件配置和智能化软件进行了全面的设计。同时,考虑到系统应用的广泛性、适用性和灵活性,在该系统中配置了多种通讯接口电路,使其更具特色。 系统采用集成度高,功能强大的新型单片机 MSP430FE427 控制,其内部集成了大量的模拟和数字外围模块,具有很强的数据处理能力。本论文设计了较为完善的智能化软件,使该检测系统具有较高的智能化程度,实现了自动增益控制、温度补偿、自动校准等多种智能化特性。提出了实现温度补偿的算法,并对检测系统进行了硬件、PCB 板和软件的抗干扰设计,保证了系统的稳定性和可靠性。 本系统的软件使用 C 语言编程,增加软件的可读性。软件采用了模块化设计方法,易于编程和调试。 本研究所设计的智能压力检测系统具有体积小、成本低、功耗低、可靠性高、响应速度快、智能化程度高等特点,在各个领域中具有广泛的应用前景。关键词:智能,检测系统,压力,单片机ABSTRACT With the development of micro-electronical technology and informationtechnology, automatic measurement technology has been one of the most importantpopular technologies in some developed countries. Now in many areas such asindustry, agriculture, national defense, transportation, medical treatment, scientificresearch, measurement technology have been effecting more and more, measurementequipments can transmit many useful information continually like nerve and senseorgan. Especially automatic measurement, alarm and control of pressure parameterhave got a lot of attention. Although the research and development in this area has received some achievements recently, it still cannot meet the actual requirements,especially low power-consuming multiplex measurement technology needs to be developed urgently.The article does a deep research on the theory and application of intelligent pressure measurement system, comes up with a new structure of intelligent pressure measurement system, and designs completely on its intelligent functions, hardware and intelligent software. Meanwhile, considering universality, applicability and flexibility of the system application, many communication interface circuits is configured in the system, which can make the system more especial. Many simulative and digital peripheral modules are integrated in a highcompositive powerful-functioned new SCM MSC1211Y4, which is used in thesystem to control and it has strong data processing capacity.The paper finished a complete intelligent software design, it makes the whole measurement system more intellectualized and realizes automatic plus control,temperature compensate, auto-collate, etc. For assuring the stability and reliability of the system, the calculating method of temperature compensate is figured out, and anti-jamming designs of hardware, PCB and software is made in the measurement system. The software was programmed in C language, which makes the software morereadable. Modularization design is used in the software, which is easy to program and debug. The characteristics of the research are small cubage, low cost, low power-consuming, high reliability, fast reaction speed, high intelligentized level, etc., which can be used in many areas widely.KEY WORDS: Intelligent, Measurement System, Pressure, SCM36第一章 绪论11.1 压力传感器的定义和分类31.1.1 传感器的定义31.1.2 压力传感器的定义与分类41.2 压力传感器研究现状与发展趋势41.2.1 压力传感器研究现状41.2.2 压力传感器的发展趋势5第二章.电阻应变式传感器的性能特点分析62.1 压力传感器62.1.1 压力的概念62.1.2 测量压力的意义62.1.3压力传感器的选择72.2金属电阻应变片的工作原理72.3电阻应变片的基本结构92.4 电阻应变片的测量电路92.4.1电桥电路的工作原理92.4.2 非线性误差及温度补偿102.5压阻式压力传感器的性能指标11第三章 基于单片机的智能压力检测系统的硬件设计123.1 信号放大电路123.1.1 放大器的选择123.2.2 三运放大电路133.3 A/D转换器143.3.1 A/D转换模块器件选择143.3.2 A/D转换器的简介143.3.3 配置位说明153.3.4 ADC0832工作时序图163.3.5 单片机对ADC0832的控制原理173.4 单片机183.4.1 MSP430FE427单片机简介183.4.2 管脚说明193.4.3 振荡器特性203.4.4 芯片擦除203.5 单片机于键盘的接口技术202.5.1 键盘功能及结构概述202.5.2 键盘抖动及去除212.5.3 单片机与键盘的连接223.6 LED显示接口232.6.1发光二极管及LED显示器242.6.2七段数码显示器252.6.3 LED数码管静态显示接口26第四章 软件设计284.1 A/D转换器的软件设计284.1.1 ADC0832芯片接口程序的编写284.2 单片机与键盘的接口程序设计294.3 LED数码管显示程序设计30第五章 系统抗干扰设计315.1 干扰的来源及分类315.1.1 干扰源315.1.2 干扰的分类315.2 硬件抗干扰措施325.2.1 单片机自身的抗干扰措施325.2.2 电源的抗干扰措施325.2.3 印刷电路板的抗干扰设计325.3 软件抗干扰措施32第五章 总结32参考文献33第一章 绪论近年来,随着微型计算机的发展,他的应用在人们的工作和日常生活中越来越普遍。工业过程控制是计算机的一个重要应用领域。其中由单片机构成的嵌入式系统已经越来越受到人们的关注。现在可以毫不夸张的说,没有微型计算机的仪器不能称为先进的仪器,没有微型计算机的控制系统不能称其为现代控制系统的时代已经到来。压力测量对实时监测和安全生产具有重要的意义。在工业生产中,为了高效、安全生产,必须有效控制生产过程中的诸如压力、流量、温度等主要参数。由于压力控制在生产过程中起着决定性的安全作用,因此有必要准确测量压力。为了测到不同位置的压力值,本次设计为基于单片机智能压力测量系统。通过压力传感器将需要测量的位置的压力信号转化为电信号,再经过运算放大器进行信号放大,送至8位AD转换器,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED显示器可以识别的信息,最后显示输出。基于单片机的智能压力检测系统,选择的单片机是基于MSP430FE427单片机的测量与显示,将压力经过压力传感器变为电信号,再通过三运放放将电信号放大为标准信号为0-5V的电压信号,然后进入A/D转换器将模拟量转换为数字量,我们所采样的A/D转换器为ADC0832,ADC0832为8位分辨率A/D转换芯片,其最高分辨可达256级,可以适应一般的模拟量转换要求。其内部电源输入与参考电压的复用,使得芯片的模拟电压输入在05V之间。芯片转换时间仅为32S,据有双数据输出可作为数据校验,以减少数据误差,转换速度快且稳定性能强。独立的芯片使能输入,使多器件挂接和处理器控制变的更加方便。通过DI数据输入端,可以轻易的实现通道功能的选择。 正常情况下ADC0832与单片机的接口应为4条数据线,分别是CS、CLK、DO、DI。但由于DO端与DI端在通信时并未同时有效并与单片机的接口是双向的,所以电路设计时可以将DO和DI并联在一根数据线上使用。 为了提高单片机系统I/O口线的利用效率,利用单片机MSP430FE427的串行口和串行移位寄存器74LS164扩展输出多位LED显示.键盘是单片机系统实现人机对话的常用输入设备。我们通过键盘,向计算机系统输入各种数据和命令,亦可通过使用键盘,让单片机系统处于预定的功能状态。要想实现压力的显示需硬件与软件配合,最终调试出来。1.1 压力传感器的定义和分类1.1.1 传感器的定义信息处理技术取得的进展以及微处理器和计算机技术的高速发展,促进并加快了传感器的开发和应用。随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。传感器已成为自动化系统的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照 Gopel 等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。传感器是一种以一定的精确度把被测量转换位于只有确定对应关系的、便于应用的另一种量的测量装置。传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。传感器的定义具体包含:(1) 传感器是测量装置,能完成检测任务;(2)它的输入量是某一被测量,可能是物理量,也可能是化学量、生物量等;(3)它的输出量是某种物理量,这种量应便于传输、转换、处理、显示等,它可以是气、光、电,但主要是电量。传感器系统的原则框图示于图 1-1。图 1-1 传感器的组成1.1.2 压力传感器的定义与分类压力传感器是压力检测系统中的重要组成部分,由各种压力敏感元件将被测压力信号转换成容易测量的电信号作输出,给显示仪表显示压力值,或供控制和报警使用。压力传感器是一种能感受压力,并按照一定的规律将压力信号转换成可用电信号的器件或装置。对压力传感器进行分类,首先应该遵循一定的分类标准。我们通常按工作原理来分类,可以分为:压阻式、电容式、电感式、压电式、智能式压力传感器等。压阻式压力传感器是目前应用最广泛的压力传感器之一。压阻式压力传感器是利用硅的压阻效应和微电子技术制成的,它具有灵敏度高、动态响应好、准确度高、易于微型化和集成化等特点,获得了广泛应用,是发展迅速的一种新的物性型传感器。压阻传感器易于批量生产,能够方便地实现微型化、集成化和智能化。因而,它成为受到人们普遍重视并重点开发的具有代表性的新型传感器。1.2 压力传感器研究现状与发展趋势1.2.1 压力传感器研究现状从世界范围看压力传感器的发展动向主要有以下几个方向:光纤压力传感器:这是一类研究成果较多的传感器,但投入实际领域的并不是太多。它的工作原理是利用敏感元件受压力作用时的形变与反射光强度相关的特性,由硅框和金铬薄膜组成的膜片结构中间,夹了一个硅光纤挡板,在有压力的情况下,光线通过挡板的过程中会发生强度的改变,通过检测这个微小的改变量,测得压力的大小。电容式真空压力传感器:E+H 公司的电容式压力传感器是由一块基片和厚度为 0.82.8mm 的氧化铝(Al2O3)构成,其间用一个自熔焊接圆环钎焊在一起,该环具有隔离作用,不需要温度补偿,可以保持长期测量的可靠性和持久的精度,测量方法采用电容原理。耐高温压力传感器:新型半导体材料碳化硅(SiC)的出现,使得单晶体的高温传感器的制作成为可能。硅微机械加工传感器:在微机械加工技术逐渐完善的今天,硅微机械传感器在汽车工业中的应用越来越多,而随着微机械传感器的体积越来越小,线宽度可以达到 12mm。具有自测试功能的压力传感器:为了降低调试与运行成本,DirkDeBruyker等人报导了一种具有自测试功能的压阻电容双元件传感器,它的自测试功能是根据热驱动原理进行的。多维力传感器:六维力传感器的研究和应用是多维力传感器研究的热点,现在国际上只有美、日等少数国家可以生产。1.2.2 压力传感器的发展趋势当今世界各国压力传感器的研究领域十分广泛,几乎渗透到了各行各业,但归纳起来主要有以下几个趋势:(1)小型化:小型化会带来更多的好处。重量轻、体积小、分辨率高,便于安装在很小的地方。各种控制仪器设备的功能越来越强大,要求各个部件体积所占位置越小越好,因而传感器本身体积也是越小越。(2)集成化:可利用现有的生产工艺和成熟的集成技术,将电路、压力传感器和其它测量用传感器集成以形成测量和控制系统。(3)智能化:由于集成化的出现,在集成电路中可添加一些微处理器,使其具有自动补偿、通信、自诊断、逻辑判断等功能。目前智能化产品发展很快,它将成为未来传感器市场的主流。(4)广泛化:压力传感器的另一个发展趋势是,正从传统的机械行业向其它领域扩展,尤为突出的是:汽车、医疗仪器和能源环境控制系统。(5)标准化:传感器的设计与制造已形成一定的行业标准。如 IEC、ISO 国际质量体系、美国的 ANSIC、ANSC、MILT 和 ASTME 标准;日本的 JIS 标准;法国的 DIN 标准;原苏联 TOCT 及 YTO 标准。第二章.电阻应变式传感器的性能特点分析2.1 压力传感器2.1.1 压力的概念压力是工业生产中的重要参数之一,为了保证生产正常运行,必须对压力进行测量和控制,但需说明的是,这里所说的压力,实际上是物理概念中的压强,即垂直作用在单位面积上的力。在压力测量中,常用绝对压力、表压力、负压力或真空度之分。所谓绝对压力是指被测介质作用在容器单位面积上的全部压力,用符号pj表示。用来测量绝对压力的仪表称为绝对压力表。地面上的空气柱所产生的平均压力称为大气压力,用符号pq表示。用来测量大气气压力的仪表叫气压表。绝对压力与大气压力之差。称为表压力,用符号pb表示。即pb=pj-pq。当绝对压力值小于大气压力值时,表压力为负值(即负压力),此负压力值的绝对值,称为真空度,用符号pz表示。压力是工业生产中的重要参数,如高压容器的压力超过额定值时便是不安全的,必须进行测量和控制。在某些工业生产过程中,压力还直接影响产品的质量和生产效率,如生产合成氨时,氮和氢不仅须在一定的压力下合成,而且压力的大小直接影响产量高低。此外,在一定的条件下,测量压力还可间接得出温度、流量和液位等参数。1643年,意大利人托里拆利首先测定标准的大气压力值为760毫米汞柱,奠定了液柱式压力测量仪表的基础。1847年,法国人波登制成波登管压力表,由于结构简单、实用,很快在工业中获得广泛应用,一直是常用的压力测量仪表。二十世纪上半叶出现了远传压力表和电接点压力表,从而解决了压力测量值的远距离传送和压力的报警、控制等问题。60年代以后,为适应工业控制、航空工业和医学测试等方面的要求,压力测量仪表日益向体积轻巧、耐高温、耐冲击、耐振动和数字显示等方向发展。2.1.2 测量压力的意义压力是过程生产中四大重要参数之一,它在检测生产过程能否完全可靠正常运行的重要参数指标,尤其在化工生产过程中压力这一参数更显得尤为重要。在化工生产过程中,压力即影响物料平衡,也影响化学反应速速,是标志生产过程能否正常进行的重要参数。安全生产的需要,从确保安全生产的角度,压力检测也是非常重要的。如:确保压力容器内的压力在安全指标之内,确保易燃易爆介质的压力不超标。在其他工业生产中压力检测于控制也非常重要。常可见到一些工业装置上都有压力表。如:汽包压力,当压力过高容易爆炸,压力低动力不足;还有炉膛压力;一般维持在0mmH2O,高了炉门缝冒烟尘,低了膛内出现负压降低温度。若维持在10 mmH2O,节能20%。压力也是间接测量物位的手段,用孔板测量流量仅能产生差压,而这个差压考压力检测的方法来测取才能最终求出流量。液面的高度可以靠测取压力的大小来表示。总之,压力检测是一般成产过程所不可缺少的环节,只有按工艺要求保持压力的稳定,才能维持生产的正常进行。所以压力准确测量在实际过程是非常重要的。2.1.3压力传感器的选择压力传感器是压力检测系统中的重要组成部分,由各种压力敏感元件将被测压力信号转换成容易测量的电信号作输出,给显示仪表显示压力值,或供控制和报警使用。力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器谐振式压力传感器及电容式加速度传感器等。 而电阻应变式传感器具有悠久的历史。由于它具有结构简单、体积小、使用方便、性能稳定、可靠、灵敏度高动态响应快、适合静态及动态测量、测量精度高等诸多优点,因此是目前应用最广泛的传感器之一。电阻应变式传感器由弹性元件和电阻应变片构成,当弹性元件感受到物理量时,其表面产生应变,粘贴在弹性元件表面的电阻应变片的电阻值将随着弹性元件的应变而相应变化。通过测量电阻应变片的电阻值变化,可以用来测量位移加速度、力、力矩、压力等各种参数。2.2金属电阻应变片的工作原理应变式压力传感器是把压力的变化转换成电阻值的变化来进行测量的,应变片是由金属导体或半导体制成的电阻体,是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。其阻值随压力所产生的应变而变化。金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。对于金属导体,如图2.1所示,一段圆截面的导线的金属丝,设其长为L,截面积为A(直径为D) ,原始电阻为 R,金属导体的电阻值可用下式表示: R=LA (2.1)式中:金属导体的电阻率(cm2/m) S导体的截面积(cm2) L导体的长度(m)图2.1 金属电阻丝应变效应当金属丝受到轴向力 F而被拉伸或压缩产生形变 ,其电阻值会随之变化 ,通过对(2.1)式两边取对数后再取全微分得: (2.2)式中为材料轴向线应变 ,且 跟据材料力学 ,在金属丝单向受力状态下 ,有 (2.3)式中为导体材料的泊松比。因此 ,有 (2.4)试验发现 ,金属材料电阻率的相对变化与其体的相对变化间的关系为 (2.5)式中 , c为常数(由一定的材料和加工方式决定)将式 (2.5)代入 (2.4) ,且当R=R时 ,可得 (2.6)式中,k=(1+2)+c(1-2)为金属丝材料的应变灵敏系数。上式表明 ,金属材料电阻的相对变化与其线应变成正比。这就是金属材料的应变电阻效应。电阻变化率 R/R 的表达式为:K=R/R/,式中材料的泊松系数;应变量。当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变情。2.3电阻应变片的基本结构电阻应变片主要由四部分组成。如图 2.2所示 ,电阻丝是应变片敏感元件;基片、覆盖片起定位和保护电阻丝的作用,并使电阻丝和被测试件之间绝缘;引出线用以连接测量导线。图 2.2电阻应变片的基本结构2.4 电阻应变片的测量电路应变片可以将应变转换为电阻的变化,为了显示于记录应变的大小,还要将电阻的变化再转换为电压或电流的变化,因此需要有专用的测量电路,通常采用直流电桥和交流电桥。2.4.1电桥电路的工作原理由于应变片的电桥电路的输出信号一般比较微弱,所以目前大部分电阻应变式传感器的电桥输出端与直流放大器相连,如图2.3所示。 图2.3直流电桥设电桥的各臂的电阻分别为R1R3R2R4 它们可以全部或部分是应变片。由于直流放大器的输入电阻比电桥电阻大的多,因此可将电桥输出端看成开路,这种电桥成为电压输出桥,输出电压U0 为 U0= (2.7)由上式可见:若R1R3=R2R4,则输出电压必为零,此时电桥处于平衡状态,称为平衡电桥。平衡电桥的平衡条件为:R1R3=R2R4 应变片工作时,其电阻变化R,此时有不平衡电压输出。 (2.8)由式(2.8)表明:R R1 时,电桥的输出电压于应变成线性关系。若相邻两桥臂的应变极性一致,即同为拉应变活压应变时,输出电压为两者之差,若不同时,则输出电压为两者之和。若相对两桥臂的极性一直,输出电压为两者之和,反之则为两者之差。电桥供电电压U越高,输出电压U0 越大,但是,当U大时,电阻应变片通过的电流也大,若超过电阻应变片所允许通过的最大工作电流,传感器就会出现蠕变和零漂。基于这些原因可以合理的进行温度补偿和提高传感器的测量灵敏度。2.4.2 非线性误差及温度补偿由式(2.8)的线性关系是在应变片的参数变化很小,极R R1 的情况下得出的,若应变片承受的压力太大,则上述假设不成立,电桥的输出电压应变之间成非线性关系。在在这种情况下,用按线性关系刻度的仪表进行测量必然带来非线性误差。为了消除非线性误差,在实际应用中,常采用半桥差动或全桥差动电路,如图2.4所示,以改善非线性误差和提高输出灵敏度。 U U (a)半桥差动电路 (b) 全桥差动电路 图2.4 差动电桥图2.4(a)为半桥差动电路,在传感器这中经常使用这种方法。粘贴应变片时,使两个应变片一个受压,一个受拉。应变符号相反,工作时将两个应变片接入电桥的相邻两臂。设电桥在初始时所示平衡的,且为等臂电桥,考虑到R=R1=R2 则得半桥差动电路的输出电压为 (2.9)由上式可见,半桥差动电路不仅可以消除非线性误差,而且还使电桥的输出灵敏度提高了一倍,同时还能起到温度补偿的作用。如果按图2.4(b)所示构成全桥差动电路同样考虑到 R=R1=R2=R3=R4时得全桥差动电路的输出电压为 (2.10)可见,全桥的电压灵敏度比单臂工作时的灵敏度提高了4倍非线性误差也得到了消除,同时还具有温度补偿的作用,该电路也得到了广泛的应用。2.5压阻式压力传感器的性能指标第三章 基于单片机的智能压力检测系统的硬件设计本次设计是以单片机组成的压力测量,系统中必须有前向通道作为电信号的输入通道,用来采集输入信息。压力的测量,需要传感器,利用传感器将压力转换成电信号后,再经放大并经A/D转换为数字量后才能由计算机进行有效处理。然后用LED进行显示,而键盘的作用是改变输入量的系数的。它的原理图如图1.1所示。压力传感器放大器显示单片机A/D转换键盘图1.1 压力测量仪表原理方框图我们这次主要做的是A/D转换,单片机键盘和显示,我们选用的A/D转换器是ADC0832,单片机为MSP430FE427,键盘为4乘4的键盘,显示为4位数码管显示。根据硬件电路编程,调试出来并显示结果。3.1 信号放大电路3.1.1 放大器的选择被测的非电量经传感器得到的电信号幅度很小,无法进行A/D转换,必须对这些模拟电信号进行放大处理。为使电路简单便于调试,本设计采用三运算放大器,因为在具有较大共模电压的条件下,仪表放大器能够对很微弱的差分电压信号进行放大,并且具有很高的输入阻抗。这些特性使其受到众多应用的欢迎,广泛用于测量压力和温度的应变仪电桥接口、热电耦温度检测和各种低边、高边电流检测。3.2.2 三运放大电路本次设计的放大器采用了三运放,因为它具有高共模抑制比的放大电路。它由三个集成运算放大器组成,如图2.5所示。2.5 三运放高共摸抑制比放大电路其中A1和A2为两个性能一致(主要指输入阻抗,共模抑制比和增益)的同相输入通用集成运算放大器,构成平衡对称差动放大输入级,A3构成双端输入单端输出的输出级,用来进一步抑制A1和A2的共模信号,并适应接地负载的需要。由于每个放大器求和点的电压等于施加在各自正输入端的电压,因此,整个差分输入电压现在都呈现在RG两端。因为输入电压经过放大后(在A1 和A2的输出端)的差分电压呈现在R5,RG和R6这三只电阻上,所以差分增益可以通过仅改变RG进行调整。 这种连接有另外一个优点:一旦这个减法器电路的增益用比率匹配的电阻器设定后,在改变增益时不再对电阻匹配有任何要求。如果R5 R6,R1 R3和R2 R4,则VOUT = (VIN2VIN1)(12R5/RG)(R2/R1)。由于RG两端的电压等于VIN,所以流过RG的电流等于VIN/RG,因此输入信号将通过A1 和A2 获得增益并得到放大。然而须注意的是对加到放大器输入端的共模电压在RG两端具有相同的电位,从而不会在RG上产生电流。由于没有电流流过RG(也就无电流流过R5和R6),放大器A1 和A2 将作为单位增益跟随器而工作。因此,共模信号将以单位增益通过输入缓冲器,而差分电压将按1(2 RF/RG)的增益系数被放大。这也就意味着该电路的共模抑制比相比与原来的差分电路增大了1(2 RF/RG)倍。 在理论上表明,得到所要求的前端增益(由RG来决定),而不增加共模增益和误差,即差分信号将按增益成比例增加,而共模误差则不然,所以比率增益(差分输入电压)/(共模误差电压)将增大。因此CMR理论上直接与增益成比例增加,这是一个非常有用的特性。 最后,由于结构上的对称性,输入放大器的共模误差,如果它们跟踪,将被输出级的减法器消除。这包括诸如共模抑制随频率变换的误差。3.3 A/D转换器模拟量输入通道的任务是将模拟量转换成数字量。能够完成这一任务的器件称之为模数转换器,简称A/D转换器。本次设计的中A/D转换器的任务是将放大器输出的模拟信号转换位数字量进行输出。3.3.1 A/D转换模块器件选择目前单片机在电子产品中已得到广泛应用,许多类型的单片机内部已带有A/D转换电路,但此类单片机会比无A/D转换功能的单片机在价格上高几元甚至很多,我们采用一个普通的单片机加上一个A/D转换器,实现A/D转换的功能,这里A/D转换器可选ADC0832、ADC0809等;串行和并行接口模式是A/D转换器诸多分类中的一种,但却是应用中器件选择的一个重要指标。在同样的转换分辨率及转换速度的前提下,不同的接口方式会对电路结构及采用周期产生影响。对A/D转换器的选择我们通过比较ADC0809和ADC0832来决定。这两个转换器都是常见的A/D转换器,其中ADC0809的并行接口A/D转换器,ADC0832是串行接口A/D转换器。我们所做的设计选择ADC0832,A/D转换在单片机接口中应用广泛 ,串行 A/D转换器具有功耗低、性价比较高、芯片引脚少等特点。3.3.2 A/D转换器的简介在这次设计中我们A/D转换器选用两通道输入的八位ADC0832,ADC08323是美国国家半导体公司生产的一种8 位分辨率、双通道A/D转换芯片。由于它体积小,兼容性强,性价比高而深受单片机爱好者及企业欢迎,其目前已经有很高的普及率。ADC0832 为8位分辨率A/D转换芯片,其最高分辨可达256级,可以适应一般的模拟量转换要求。其内部电源输入与参考电压的复用,使得芯片的模拟电压输入在05V之间。芯片转换时间仅为32S,据有双数据输出可作为数据校验,以减少数据误差,转换速度快且稳定性能强。独立的芯片使能输入,使多器件挂接和处理器控制变得更加方便。通过DI 数据输入端,可以轻易的实现通道功能的选择。有关引脚说明如下: CS 片选使能,低电平芯片使能。 CH0 模拟输入通道0,或作为IN+/-使用。 CH1 模拟输入通道1,或作为IN+/-使用。 GND 芯片参考0电位(地)。 DI 数据信号输入,选择通道控制。 DO 数据信号输出,转换数据输出。 CLK 芯片时钟输入。 Vcc/REF 电源输入及参考电压输入(复用)。正常情况下ADC0832 与单片机的接口应为4条数据线,分别是CS、CLK、DO、DI。它的结构示意图如图2.6所示。图2.6 ADC0832结构示意图3.3.3 配置位说明ADC0832工作时,模拟通道的选择及单端输入和差分输入的选择,都取决于输入时序的配置位。当差输入时,要分配输入通道的极性,两个输入通道的任何一个通道都可作为正极或负极。ADC0832的配置位逻辑表如表2.1所示。表2.1的配置位逻辑表表中“+”表示输入通道的端点为正极性;“-”表示输入端点为负极性H或L表示高、低电平。输入配置位时,高位(CH0)在前,低位(CH1 )在后。3.3.4 ADC0832工作时序图当 CS由高变低时,选中ADC0832 。在时钟的上升沿,DI 端的数据移入 ADC0832内部的多路地址移位寄存器。在第一个时钟期间,DI为高,表示启动位,紧接着输入两位配置位。当输入启动位和配置位后,选通输入模拟通道,转换开始。转换开始后,经过一个时钟周期延接着在第一个时钟周期延迟,以使选定的通道稳定。ADC0832紧接着在第4个时钟下降沿输出转换数据。数据输出时先输出最高位(D7D0)输出完转换结果后,又以最低位开始重新遍数据(D7D0 ),两次发送的最低位共用。当片选CS为高时,内部所有寄存器清 ,输出变为高阻态。如果要再进行一次模 数转换,片选 必须再次从高向低跳变,后面再输入启动位和配置位。图2.7 ADC083工作时序图3.3.5 单片机对ADC0832的控制原理 正常情况下ADC0832与单片机的接口应为4条数据线,分别是CS、CLK、DO、DI。但由于DO端与DI端在通信时并未同时有效并与单片机的接口是双向的,所以电路设计时可以将DO和DI并联在一根数据线上使用。 当ADC0832未工作时其CS输入端应为高电平,此时芯片禁用,CLK和DO/DI的电平可任意。当要进行A/D转换时,须先将CS使能端置于低电平并且保持低电平直到转换完全结束。此时芯片开始转换工作,同时由处理器向芯片时钟输入端CLK输入时钟脉冲,DO/DI端则使用DI端输入通道功能选择的数据信号。在第1个时钟脉冲的下沉之前DI端必须是高电平,表示启始信号。在第2、3个脉冲下沉之前DI端应输入2位数据用于选择通道功能。其功能项见表2.2。表2.2ADC0832的功能表MUX AddressChannelSGL/DIFODD/SIGN0110+11+MUX AddressChannelSGL/DIFODD/SIGN0110+-11-+如表2.2所示,当此2位数据为“1”、“0”时,只对CH0进行单通道转换。当2位数据为“1”、“1”时,只对CH1进行单通道转换。当2位数据为“0”、“0”时,将CH0作为正输入端IN+,CH1作为负输入端IN-进行输入。当2位数据为“0”、“1”时,将CH0作为负输入端IN-,CH1作为正输入端IN+进行输入。到第3个脉冲的下沉之后DI端的输入电平就失去输入作用,此后DO/DI端则开始利用数据输出DO进行转换数据的读取。从第4个脉冲下沉开始由DO端输出转换数据最高位DATA7,随后每一个脉冲下沉DO端输出下一位数据。直到第11个脉冲时发出最低位数据DATA0,一个字节的数据输出完成。也正是从此位开始输出下一个相反字节的数据,即从第11个字节的下沉输出DATD0。随后输出8位数据,到第19个脉冲时数据输出完成,也标志着一次A/D转换的结束。最后将CS置高电平禁用芯片,直接将转换后的数据进行处理就可以了。作为单通道模拟信号输入时ADC0832的输入电压是05V且8位分辨率时的电压精度为19.53mV。如果作为由IN+与IN-输入的输入时,可是将电压值设定在某一个较大范围之内,从而提高转换的宽度。在进行IN+与IN-的输入时,如果IN-的电压大于IN+的电压则转换后的数据结果始终为00H。 3.4 单片机随着电子技术的发展,单片机的功能将更加完善,因而单片机的应用将更加普及。它们将在智能化仪器、家电产品、工业过程控制等方面得到更广泛的应用。单片机将是智能化仪器和中、小型控制系统中应用最多的有种微型计算机。3.4.1 MSP430FE427单片机简介 德州仪器的MSP430超低功耗微控制器系列包括具有几个设备针对不同的外设集各种应用。该体系结构,与五个结合低功耗模式的优化,实现了便携式测量应用中延长电池寿命。该器件具有强大的16位RISC CPU,16位寄存器和常数发生器,有助于最大限度的代码效率。数位控制振荡器(DCO)允许唤醒从低功耗模式,以积极的方式较少比6s。该MSP430FE42x系列有三个独立的16位-微控制器配置模拟至数字(A/D)转换器和一个嵌入式信号处理器核心用于测量和计算单相电能两个2线和3线配置。还包括一个内置的16位定时器,液晶128段驱动能力,14I / O引脚。典型应用包括2线,包括防篡改米和3线单相计量实现。图2.9 MSP430FE427单片机的结构示意图3.4.2 管脚说明VCC:供电电压。 I1+:当前1积极的模拟输入。V1+:1的正模拟输入电压。XIN:晶体振荡器的输入端口XT1。XOUT:晶体振荡器的输出端XT1 VREF:外部参考电压输入/输出内部参考电压。P2.2/STE0:通用数字I / OS0:LCD段输出0R03:输入端口第四阳性(最低)模拟液晶水平(V5中)R33:输出端口模拟液晶最积极的水平P2.1/UCLK0/S24:通用数字I / O/外部时钟input-USART0/UART或SPI模式,时钟output-USART0/SPITDO/TDI:测试数据输出端口TDI/TCLK:测试数据输入或测试时钟输入。TMS:测试模式选择。TCK:测试时钟。RST/NMI:复位输入P2.5/URXD0:通用数字I / O/接收数据in-USART0/UART模式AVSS:模拟电源电压,负极。DVSS;数字电源电压,负极。3.4.3 振荡器特性 XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。3.4.4 芯片擦除整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms 来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。此外,MSP430FE427设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,CPU停止工作。但RAM,定时器,计数器,串口和中断系统仍在工作。在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。 2.5 单片机于键盘的接口技术2.5.1 键盘功能及结构概述键盘是单片机系统实现人机对话的常用输入设备。操作员通过键盘,向计算机系统输入各种数据和命令,亦可通过使用键盘,让单片机系统处于预定的功能状态。键盘按照其内部不同电路结构,可分为编码键盘和非编码键盘

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论