




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一次函数的素材 一次函数和方程的联系与区别: 一次函数和不等式: . 典型例题 函数问题1 函数问题2 函数问题3 函数问题4 函数问题5 函数问题6 函数问题7 函数问题8 函数问题9 函数问题10 综合测试 9 其它相关 一次函数表示方法1、解析式法用含自变量x的式子表示函数的方法。2、列表法把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。3、图像法用图象来表示函数关系的方法叫做图象法。一次函数解析式一次函数的解析式为:其中k是比例系数,不能为0;x表示自变量。且k和b均为常数。先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出解析式的方法,叫做待定系数法。一次函数基本性质1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k0) (k不等于0,且k,b为常数)2.当x=0时,b为函数在y轴上的交点,坐标为(0,b).当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)3.k为一次函数y=kx+b的斜率,k=tan(角为一次函数图象与x轴正方向夹角,90)形、取、象、交、减。4.当b=0时(即 y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数.5.函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直;6.平移时:上加下减在末尾,左加右减在中间7.一次函数图像性质1作法与图形:通过如下3个步骤:(1)列表:每确定自变量x的一个值,求出因变量y的一个值,并列表;(2)描点:一般取两个点,根据“两点确定一条直线”的道理;(3)连线:可以作出一次函数的图象一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。(通常找函数图象与x轴和y轴的交点分别是-与(,0),(0,b)2性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(,0)正比例函数的图象都是过原点。3函数不是数,它是指某一变化过程中两个变量之间的关系。4k,b与函数图象所在象限:y=kx时(即b等于0,y与x成正比,此时的图象是一条经过原点的直线)当k0时,直线必通过一、三象限,y随x的增大而增大;当k0,b0, 这时此函数的图象经过一,二,三象限;当 k0,b0, 这时此函数的图象经过一,三,四象限;当 k0, 这时此函数的图象经过一,二,四象限;当 k0,b0时,直线必通过一、二象限;当b0时,直线只通过一、三象限,不会通过二、四象限。当k0,b0:经过第一、二、三象限k0,b0,b=0:经过第一、三象限(经过原点)结论:k0时,图象从左到右上升,y随x的增大而增大。k0:经过第一、二、四象限k0,b0:经过第二、三、四象限k0,b=0:经过第二、四象限(经过原点)结论:k0时,不等式kx+b0的解为:x- b/k,不等式kx+b0的解为:x- b/k;当k0的解为:x- b/k,不等式kx+b- b/k。1 一次函数典型例题 一次函数函数问题1已知正比例函数 ,则当k0时,y随x的增大而减小。解:根据正比例函数的定义和性质,得 ky2,则x1与x2的大小关系是( )A. x1x2 B. x10,且y1y2。根据一次函数的性质“当k0时,y随x的增大而增大”,得x1x2。故选A。一次函数函数问题3一次函数y=kx+b满足kb0,且y随x的增大而减小,则此函数的图象不经过( )A. 第一象限 B. 第二象限C. 第三象限 D. 第四象限解:由kb0,知k、b同号。因为y随x的增大而减小,所以k0,从而b0。故一次函数y=kx+b的图象经过第二、三、四象限,不经过第一象限。故选A .一次函数函数问题4一个弹簧,不挂物体时长12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例。如果挂各种形式的一次函数 上3kg物体后,弹簧总长是13.5cm,求弹簧总长是y(cm)与所挂物体质量x(kg)之间的函数关系式.如果弹簧最大总长为23cm,求自变量x的取值范围.分析:此题由物理的定性问题转化为数学的定量问题,同时也是实际问题,其核心是弹簧的总长是空载长度与负载后伸长的长度之和,而自变量的取值范围则可由最大总长最大伸长最大质量及实际的思路来处理.解:由题意设所求函数为y=kx+12则13.5=3k+12解之,k=0.5y与x的函数关系式为y=0.5x+12由题意,得:23=0.5x+12=22解之,x=22自变量x的取值范围是0x22当X30时,Y10,则y随x的增大而增大;若k0,则y随x的增大而减小。一次函数函数问题9将函数图象沿x(y)轴正(负)方向平移。例题:将一次函数y=2x沿x轴正方向平移1个单位长度。将一次函数y=-x-1沿y轴负方向平移2个单位长度。答案:y=2x-2 y=-x-3一次函数综合测试选择题:1. 若正比例函数y=kx的图象经过一、三象限,则k的取值范围是( )A.k0 B.k0 D.k为任意值2. 一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度y(cm)与燃烧时间x(小时)的函数关系用图象表示为( )A.y=5x B.y=4x C.y=20-5x D.无法确定3. (北京市)一次函数y=x+3 的图象不经过的象限是( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限综合测试答案1.C 2.C 3.D一次函数其它相关函数和方程1、从形式上看:一次函数y=kx+b, 一元一次方程ax+b=0 。2、从内容上看:一次函数表示的是一对(x, y)之间的关系,它有无数对值;一元一次方程表示的是未知数x的值,最多只有1个值 。3、相互关系:一次函数与x轴交点的横坐标就是相应的一元一次方程的根。 例如:y=4x+8与x轴的交点是(-2, 0)、则一元一次方程4x+8=0的根是x=-2。函数和不等式解不等式的方法:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。对应一次函数y=kx+b,它与x轴交点为(-b/k, 0)。当k0时,不等式kx+b0的解为:x-b/k,不等式kx+b0的解为:x-b/k;当k0的解为:x-b/k,不等式kx+b-b/k。与二元一次方程的关系(1)以二元一次方程组ax+by=c的解为坐标的点组成的图象与一次函数y=(-a/b)x+c/b的图象相同。(2)二元一次方程组a1x+b1y=c1, a2x+b2y=c2的解可以看作是两个一次函数y=(-a1/b1)x+c1/d1和y=(-a2/b2)x+c2/d2的图象的交点。方法小结把方程组中的两个二元一次方程改写成一次函数的形式,然后作出它们的图象,找出两图像的交点,即可知方程组的解。区别二元一次方程有两个未知数,而一次函数只是说未知数的次数为一次,并未限定几个变量,因此二元一次方程只是一次函数中的一种。(1)在平面直角坐标系中分别描绘出以二元一次方程的解为坐标的点,这些点都在相应的一次函数的图象上。如方程2x+y=5有无数组值,像x=1,y=3;x=2,y=1;以这些解为坐标的点(1, 3),(2, 1)都在一次函数y=-2x+5的图象上。(2)在一次函数图象上任取一点,它的坐标都适合相应的二元一次方程。如在一次函数y=-x+2的图象上任取一点(3, -1),则x=3,y=-1一定是二元一次方程x+y=2的一组解。函数的由来“函数”一词最初是由德国的数学家莱布尼茨在17世纪首先采用的,当时莱布尼茨用“函数”这一词来表示变量x的幂,即x2,x3,.接下来莱布尼茨又将“函数”这一词用来表示曲线上的横坐标、纵坐标、切线的长度、垂线的长度等等所有与曲线上的点有关的变量.就这样“函数”这词逐渐盛行。在中国,古时候的人将“函”字与“含”字通用,都有着“包含”的意思,清代数学家、天文学家、翻译家和教育家,近代科学的先驱者李善兰给出的定义是:“凡式中含天,为天之函数.”中国的古代人还用“天、地、人、物”4个字来表示4个不同的未知数或变量,显然,在李善兰的这个定义中的含义就是“凡是公式中含有变量x,则该式子叫做x的函数.”这样,在中国“函数”是指公式里含有变量的意思。瑞士数学家雅克柏努意给出了和莱布尼茨相同的函数定义.1718年,雅克柏努意的弟弟约翰柏努意给出了函数了如下的函数定义:由任一变数和常数的任意形式所构成的量叫做这一变数的函数.换句话说,由x和常量所构成的任一式子都可称之为关于x的函数。1775年,欧拉把函数定义为:“如果某些变量:以某一种方式依赖于另一些变量.即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数.”由此可以看到,由莱布尼兹到欧拉所引入的函数概念,都还是和解析表达式、曲线表达式等概念纠缠在一起。首屈一指的法国数学家柯西引入了新的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其它变数的值也可随之而确定时,则将最初的变数称之为自变数,其它各变数则称为函数”.在柯西的定义中,首先出现了“自变量”一词。1834年,俄国数学家罗巴契夫斯基进一步提出函数的定义:“x的函数是这样的一个数,它对于每一个x都有确定的值,并且随着x一起变化.函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这种依赖关系可以存在,但仍然是未知的”.这个定义指出了对应关系。即条件的必要性,利用这个关系以求出每一个x的对应值。1837年德国数学家狄里克雷认为怎样去建立x与y之间的对应关系是无关紧要的,所以他的定义是:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数。”德国数学家黎曼引入了函数的新定义:“对于x的每一个值,y总有完全确定了的值与之对应,而不拘建立x,y之间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文山州麻栗坡县消防救援大队招聘考试真题2024
- 国殇考试题及答案
- 历年考试题及答案
- 中级财务会计学(安徽财经大学)知到智慧树答案
- 中级微观经济学(双语)(山东联盟)知到智慧树答案
- 中外陶瓷商务英语知到智慧树答案
- 血液肿瘤科PICC专项技术理论考题(附答案)
- 2025版商品房认购及智能家居安装协议范本
- 2025年度专业地板砖铺装施工服务合同
- 2025版汽车经销商品牌授权及销售支持合同
- 小儿上呼吸道感染
- 2025年CCAA国家注册审核员考试(产品认证基础)历年参考题库含答案详解(5卷)
- 2025-2030中国骨科手术导航机器人医生培训体系与手术量增长关联报告
- 北京市西城区2024-2025学年七年级下学期期末道德与法治试题(解析版)
- 苏州工业园区外国语学校语文新初一均衡分班试卷
- 《智能建造概论》高职完整全套教学课件
- 2025-2026小学学年度第一学期教学工作安排表:启智育心绘蓝图筑梦前行谱新篇
- GB/T 30807-2025建筑用绝热制品浸泡法测定长期吸水性
- 无限极中医秋季养生课件
- GB/T 23806-2025精细陶瓷断裂韧性试验方法单边预裂纹梁(SEPB)法
- 妇科常规手术器械处理流程
评论
0/150
提交评论