(试题 试卷 真题)2014湖北高考数学(理)_第1页
(试题 试卷 真题)2014湖北高考数学(理)_第2页
(试题 试卷 真题)2014湖北高考数学(理)_第3页
(试题 试卷 真题)2014湖北高考数学(理)_第4页
(试题 试卷 真题)2014湖北高考数学(理)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2014年普通高等学校招生全国统一考试(湖北卷)数学(理科)一选择题:本大题共10小题,每小题5分,共50分 在每小题给出的四个选项中,只有一项是符合题目要求的。1 为虚数单位,则( )A. B C D 2 若二项式的展开式中的系数是84,则实数( )A. 2 B C 1 D 3 设为全集,是集合,则“存在集合使得是“”的( )A 充分而不必要条件 B 必要而不充分条件 C 充要条件 D 既不充分也不必要条件 4. 根据如下样本数据x345678y402505得到的回归方程为,则( )A. B C D5. 在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号的四个图,则该四面体的正视图和俯视图分别为( )图11 A和 B和 C和 D和6. 若函数f(x),g(x)满足,则称f(x),g(x)为区间-1,1 上的一组正交函数,给出三组函数:;其中为区间的正交函数的组数是( )A0 B1 C2 D37. 由不等式确定的平面区域记为,不等式,确定的平面区域记为,在中随机取一点,则该点恰好在内的概率为( )A B C D8算数书竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也又以高乘之,三十六成一该术相当于给出了有圆锥的底面周长与高,计算其体积的近似公式它实际上是将圆锥体积公式中的圆周率近似取为3那么近似公式相当于将圆锥体积公式中的近似取为( )A B C D9已知是椭圆和双曲线的公共焦点,是他们的一个公共点,且,则椭圆和双曲线的离心率的倒数之和的最大值为( )A B C3 D210已知函数f(x)是定义在R上的奇函数,当时,若则实数a的取值范围为( )A B C D 2、 填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分请将答案天灾答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分11设向量,若,则实数_12直线和将单位圆分成长度相等的四段弧,则_13设是一个各位数字都不是0且没有重复数字的三位数将组成的3个数字按从小到大排成的三位数记为,按从大到小排成的三位数记为(例如,则,)阅读如图所示的程序框图,运行相应的程序,任意输入一个,输出的结果_14. 设是定义在上的函数,且,对任意,若经过点的直线与轴的交点为,则称为关于函数的平均数,记为,例如,当时,可得,即为的算术平均数(1) 当时,为的几何平均数;(2) 当当时,为的调和平均数;(以上两空各只需写出一个符合要求的函数即可)15. (选修4-1:几何证明选讲)如图,为的两条切线,切点分别为,过的中点作割线交于两点,若则16. (选修4-4:坐标系与参数方程)已知曲线的参数方程是,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是,则与交点的直角坐标为_17(本小题满分11分)某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?18(本小题满分12分)已知等差数列满足:=2,且,成等比数列(1) 求数列的通项公式(2) 记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由19(本小题满分12分)如图,在棱长为2的正方体中,分别是棱的中点,点分别在棱,上移动,且(1) 当时,证明:直线平面;(2) 是否存在,使平面与面所成的二面角?若存在,求出的值;若不存在,说明理由20. (本小题满分12分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和单位:亿立方米)都在40以上其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立(1) 求未来4年中,至多1年的年入流量超过120的概率;(2) 水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系;年入流量X40X120发电机最多可运行台数123若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?21. (满分14分)在平面直角坐标系中,点M到点的距离比它到轴的距离多1,记点M的轨迹为C(1) 求轨迹为C的方程(2) 设斜率为k的直线过定点,求直线与轨迹C恰好有一个公共点,两个公共点,三个公共点时k的相应取值范围。参考答案一、 选择题1A解析:因为,故选A.2C解析:因为 ,令,得,所以,解得,故选C.3C解析:依题意,若,则,当,可得;取集合,此时,存在,使且,故选C.4B解析:依题意,画散点图知,回归直线斜率小于0,纵截距大于0,即,.选B.5D解析:题中所给4点依次为下图中的D1,B,侧面BC1的中心,B1,所以正视图和俯视图分别为和,故选D6C解析:对, 对,对故由正交函数定义选C.7D解析:依题意,不等式组表示的平面区域如图,由几何公式知,该点落在内的概率为,选D.8B解析:设圆锥底面圆的半径为,高为,依题意, ,所以,即的近似值为,故选B9A解析:设椭圆的长半轴为,双曲线的实半轴为(),半焦距为,由椭圆、双曲线的定义得,所以因为,由余弦定理得,即所以,故选A.10B解析:依题意,当时,函数图像如图所示,因为对任意实数都有,所以,由图可知,解得,故选B11解析:由得:.又, .故12解析:依题意,圆心到两条直线的距离相等,且每段弧的长度都是圆周的,又两直线的斜率都为1,得,故.13解析:不妨取,则;若,则;若,则;若,则;若,则;,则终止循环,故输出49514解析:(1)为的几何平均数时:,由三点共线得即,故(2)为的调和平均数时:,由三点共线得即,故154解析 由切线长定理得QA2QCQD1(13)4,解得QA2.故PBPA2QA4.16解析:由消去得,由得,解方程组得与的交点坐标为.17解:(I)因为,又,所以,当时,;当时,;于是在上取得最大值12,取得最小值8故实验室这一天最高温度为,最低温度为,最大温差为(II)依题意,当时实验室需要降温由(1)得,所以,即,又,因此,即,故在10时至18时实验室需要降温18解:(I)设数列的公差为,依题意,成等比数列,所以,化简得,解得或,当时,;当时,从而得数列的通项公式为或(II)当时,显然,不存在正整数,使得成立当时,令,即,解得或(舍去)此时存在正整数,使得成立,的最小值为41综上所述,当时,不存在满足题意的;当时,不存在满足题意的;的最小值为4119解:(I)证明:如图1,连结,由是正方体,知,当时,是的中点,又是的中点,所以,所以,而平面,且平面,故直线平面(II)如图2,连结,因为分别是的中点,所以,且,又,所以四边形是平行四边形,故,且,从而,且,在和中,因为,于是,所以四边形是等腰梯形,同理可证四边形是等腰梯形,分别取的中点为,连结,则,而,故是平面与平面所成的二面角的平面角,若存在,使平面与平面所成的二面角为直二面角,则,连结,则由,且,知四边形是平行四边形,连结,因为是的中点,所以,在中,由得,解得,故存在,使平面与平面所成的二面角为直二面角向量法:以为原点,射线分别为轴的正半轴建立如图3的空间直角坐标系,由已知得,所以,(I)证明:当时,因为,所以,即,而平面,且平面,故直线平面(II)设平面的一个法向量,由可得,于是取,同理可得平面的一个法向量为,若存在,使平面与平面所成的二面角为直二面角,则,即,解得,故存在,使平面与平面所成的二面角为直二面角20解:(I)依题意,由二项分布,在未来4年中至多有1年入流量找过120的概率为:(II)记水电站年总利润为(单位:万元)安装1台发电机的情形由于水库年入流量总大于40,所以一台发电机运行的概率为1,对应的年利润,安装2台发电机当时,一台发电机运行,此时,因此,当时,两台发电机运行,此时,因此由此得的分布列如下:4200100000208所以安装3台发电机依题意,当时,一台发电机运行,此时,因此;当时,两台发电机运行,此时,此时,当时,三台发电机运行,此时,因此,由此得的分布列如下:34920015000020801所以综上,欲使水电站年总利润的均值达到最大,应安装发电机2台21解:(I)设点,依题意,即,整理的,所以点的轨迹的方程为(II)在点的轨迹中,记,依题意,设直线的方程为,由方程组得 当时,此时,把代入轨迹的方程得,所以此时直线与轨迹恰有一个公共点当时,方程的判别式为 设直线与轴的交点为,则由,令,得(i)若,由解得或即当时,直线与没有公共点,与有一个公共点,故此时直线与轨迹恰有一个公共点(ii)若或,由解得或,即当时,直线与有一个共点,与有一个公共点当时 ,直线与有两个共点,与没有公共点故当时,故此时直线与轨迹恰有两个公共点(iii)若,由解得或,即当时,直线与有两个共点,与有一个公共点故此时直线与轨迹恰有三个公共点综上所述,当时直线与轨迹恰有一个公共点; 当时,故此时直线与轨迹恰有两个公共点; 当时,故此时直线与轨迹恰有三个公共点22解:(I)函数的定义域为,因为,所以,当,即时,函数单调递增;当,即时,函数单调递减;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论