




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019年轴对称知识点汇总 轴对称知识在数学考试中是一个常考点,那么应该掌握的知识又有什么呢?下面轴对称知识点汇总是为大家带来的,希望对大家有所帮助。 一、轴对称与轴对称图形: 1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。 2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。 注意:对称轴是直线而不是线段 3.轴对称的性质: (1)关于某条直线对称的两个图形是全等形; (2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线; (3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上; (4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。 4.线段垂直平分线: (1)定义:垂直平分一条线段的直线是这条线的垂直平分线。 (2)性质:线段垂直平分线上的点到这条线段两个端点的距离相等; 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。 5.角的平分线: (1)定义:把一个角分成两个相等的角的射线叫做角的平分线. (2)性质:在角的平分线上的点到这个角的两边的距离相等. 到一个角的两边距离相等的点,在这个角的平分线上. 注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等. 6.等腰三角形的性质与判定: 性质: (1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴; (2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合; (3)等边对等角:等腰三角形的两个底角相等。 说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:等腰三角形两底角的平分线相等;等腰三角形两腰上的中线相等; 等腰三角形两腰上的高相等;等腰三角形底边上的中点到两腰的距离相等。 判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。 7.等边三角形的性质与判定: 性质:(1)等边三角形的三个角都相等,并且每个角都等于60; (2)等边三角形具有等腰三角形的所有性质,并且在每条边上都有“三线合一”。因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴。 判定定理:有一个角是60的等腰三角形是等边三角形。 说明:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等。 二、中心对称与中心对称图形: 1.中心对称:把一个图形绕着某一个点旋转180,如果它能够和另外一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。 2.中心对称图形:在平面内,一个图形绕某个点旋转180,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。 3.中心对称的性质:(1)关于中心对称的两个图形是全等形; (2)在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分; (3)成中心对称的两个图形,对应线段平行(或在同一直线上)且相等。 三、几种常见的轴对称图形和中心对称图形: 轴对称图形:线段、角、等腰三角形、等边三角形、菱形、矩形、正方形、等腰梯形、圆 对称轴的条数:角有一条对称轴,即该角的角平分线;等腰三角形有一条对称轴,是底边的垂直平分线;等边三角形有三条对称轴,分别是三边上的垂直平分线;菱形有两条对称轴,分别是两条对角线所在的直线,矩形有两条对称轴分别是两组对边中点的直线; 中心对称图形:线段、平行四边形、菱形、矩形、正方形、圆 对称中心:线段的对称中心是线段的中点;平行四边形、菱形、矩形、正方形的对称中心是对角线的交点,圆的对称中心是圆心。 说明:线段、菱形、矩形、正方形以及圆它们即是轴对称图形又是中心对称图形。 四、坐标系中的轴对称变换与中心对称变换: 点P(x,y)关于x轴对称的点P1的坐标为(x,-y),关于y轴对称的点P2的坐标为(-x,y)。关于原点对称的点的坐标P3的坐标是(-x,-y)这个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光电厂运行知识培训内容课件
- 全脑血管造影术护理课件
- 护理员喂食喂水培训课件
- 团员个人发言稿
- 初中毕业学生代表发言稿
- 光器件耦合知识培训课件
- 2025版企业数字化转型电脑租赁合同
- 2025版区域经济合作与发展项目合作协议书范本
- 二零二五年货运汽车承包车辆维修保养协议
- 二零二五年度农产品加工代工厂合作协议
- 2025年度运输业安全生产知识竞赛试题(附答案)
- 光伏居间的合同8篇
- 从业人员培训管理制度
- 医疗风险防控培训课件
- 酒店前台礼貌礼节培训
- 诊疗规范培训课件
- 幸福心理学-(彭凯平)
- 2025年中邮保险招聘笔试参考题库含答案解析
- 《中国老年糖尿病诊疗指南(2024版)》解读课件
- 《中国女性乳腺癌患者糖尿病和糖尿病前期管理专家共识》 (2024版)
- 特种设备安全检查与巡查制度
评论
0/150
提交评论