



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1.1 平面疱丁巧解牛知识巧学一、几何中平面的特点 几何里所说的平面是从生活中的平面抽象出来的,是向空间无限延展的,是理想化的平面,而生活中的平面,是有大小的.现实生活中如桌面、黑板面、表面等都是有大有小,不是几何中所说的平面. 平面是无限延伸的,可根据研究问题的需要随时延伸.方法点拨 平面是不加定义的基本概念.平面没有厚薄,它向四周无限延展,无“边”无“沿”,也就是说,它把整个空间(指我们生活着的空间)分成互不连通的两部分.二、几何中平面的表示方法1.图形表示:用平行四边形等封闭曲线表示平面.2.文字语言表示:把希腊字母、等字母写在代表平面的平行四边形的一个角内;也可以用代表平面的平行四边形的四个顶点或者用对角线上的两个顶点字母表示.3.一个平面被另一个平面所遮住时图形的画法:为增加立体感,通常被遮住的部分画成虚线.方法点拨 平面可以用平行四边形表示,也可以用三角形表示,还可以用梯形表示,表示方法不唯一. 当平面用希腊字母表示时,在角上不要画弧,那样,会表示角的.三、平面的基本性质 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理1是判定直线在平面内的依据. 图形表示:如图2-1-1.图2-1-1 符号语言表示:ab,bb,a,b,则b. 公理2:过不在一条直线上的三点,有且只有一个平面.方法点拨 公理1是证明线在面内的最基本的方法,要证明线在面内,只需证明线上的两点在面内即可. 公理2的作用是确定平面,它是把空间问题化归成平面问题的重要依据,并可证明“两个平面重合”.特别要注意公理2中“不在一条直线上的三个点”这一条件. “有且只有”的含义可以分开来理解.“有”是说明“存在”,“只有一个”说明“唯一”,所以“有且只有一个”也可以说成“存在”并且“唯一”,与确定同一.方法点拨 公理2注意三点不能在一条直线上,体现了平面的稳定性. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 图形表示:如图2-1-2.图2-1-2 符号语言表示:p(),则=b且pb. 公理3的作用是判定两个平面相交及证明点在直线上.方法点拨 公理3说明平面是向空间无限延展的,同时它也是证明点共线、线共点最重要的一种方法. 公理3经常与公理1合用,由公理3确定平面,然后由公理1证明线在面内.四、平面基本性质的推论 推论1:经过一条直线和直线外一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面. 图形表示:如图2-1-3.图2-1-3方法点拨 推论1、推论2、推论3在课本中没有体现出来,它实际上是由公理2推出的,通常用公理2、推论1、推论2、推论3来确定平面,再用公理1证明线在面内,它们之间联系比较密切.问题探究问题1 三个公理的作用是什么?探究:公理1的作用是既可判断直线是否在平面内,又可用直线检验平面;公理2的作用一是确定平面,二是证明点、线共面;公理3的作用一是可以判断两个平面是否相交,二是可以判定点共线.问题2 试用符号语言表示三个公理.探究:公理1:ab,bb,a,b,则b;公理2:略;公理3:p(),则=b且pb.刻画平面性质的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础,应熟练掌握其符号语言并能灵活应用.典题热题例1 用符号表示下列语句,并画出图形.(1)三个平面、交于一点p,且平面与平面交于pa,平面与平面交于pb,平面与平面交于pc;(2)平面abd与平面bcd相交于bd,平面abc与平面adc交于ac.思路解析:利用空间想象画出图形,注意使用正确的空间图形符号.答案:(1)符号语言表示:=p,=pa,=pb,=pc; 图形表示:如图2-1-4.图2-1-4(2)符号语言表示: 平面abd平面bcd=bd, 平面abc平面acd=ac; 图形表示:如图2-1-5.图2-1-5深化升华 图形语言、符号语言、文字语言间可以相互转化,要注意点是元素,直线、平面都是点的集合.例2 两两相交且不过同一点的三条直线必在同一个平面内.如图2-1-6.已知:abac=a,abbc=b,acbc=c.求证:直线ab、bc、ac共面.图2-1-6思路解析:证明点、线共面问题,一般做法是:先由某些点、线确定一个平面,然后证明其余的点、线也在这个平面内.解:证法一:因为acab=a, 所以直线ab、ac确定一个平面. 因为bab,cac,所以b,c.故bc. 因此直线ab、bc、ca都在平面内,即它们共面. 证法二:因为a不在直线bc上, 所以过点a和直线bc确定平面. 因为a,bbc,所以b. 故ab.同理,ac.所以ab、ac、bc共面. 证法三:因为a、b、c三点不在一条直线上, 所以过a、b、c三点可以确定平面. 因为a,b,所以ab. 同理,bc,ac. 所以ab、bc、ca三直线共面.方法归纳 证明点线共面问题还可以用同一法,即由其中某些点线确定一个平面,再由另一些直线确定另一个平面,然后证明两个平面重合.证明两个平面重合用公理及推论的唯一性.例3 如图2-1-7,在正方体abcda1b1c1d1中,e、f分别是cc1和aa1的中点,画出平面bed1f与平面abcd的交线.图2-1-7思路解析:可根据公理3,如果两个平面有一个公共点,它们就有过这点的一条直线,也只有这一条直线;这条直线的位置还需借助于另一个条件来确定.解:在平面aa1d1d内,延长d1f,d1f与da不平行,因此d1f与da必相交于一点,设为p,则pfd1,pad. 又d1f平面bed1f,da平面abcd,p平面bed1f,p平面abcd.p平面bed1f平面abcd,即p为平面bed1f与平面abcd的公共点.又b为平面abcd与平面bed1f的公共点,连结pb,pb即为平面abcd与平面bed1f的交线.误区警示 公理3是两个平面相交的性质,它说明两个平面相交,交线是一条直线.要注意理解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业培训评估与反馈模板
- 员工培训资源清单及模板库
- 汽车维修与保养合作合同
- 2025广西钦州市北部湾大学公开招聘高层次人才53人模拟试卷及参考答案详解1套
- 借贷活动合规承诺书7篇
- 历史保护建筑修复质量承诺书3篇
- 山西省忻州市2024-2025学年高三上学期10月月考地理试题(解析版)
- 辽宁省凌源市2024-2025学年高一下学期期末考试地理试题(解析版)
- 使命彻底完成承诺书5篇
- 2025广西职业技术学院博士人才专项招聘64人模拟试卷及完整答案详解
- 页人音版三年级音乐上册音乐教案(2025-2026学年)
- 员工应急救护知识培训课件
- 2025昆明中北交通旅游(集团)有限责任公司驾驶员招聘(60人)考试参考题库及答案解析
- 2026中国航空工业集团金航数码校园招聘备考考试题库附答案解析
- 健康教育培训师资队伍建设方案
- 二类医疗器械零售经营备案质量管理制度
- 2025年医技三基考试试题及答案
- 既有建筑幕墙安全培训课件
- 2025年全国事业单位联考C类《职业能力倾向测验》试题及答案
- 英语A级常用词汇
- 气管切开非机械通气患者气道护理团体标准课件
评论
0/150
提交评论