全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.2.3 直线与圆的方程的应用疱丁巧解牛知识巧学一、解决与圆相关的实际问题 运用圆的相关知识可以解决实际生活中的有关问题,解决此类问题的基本步骤:(1)阅读理解,认真审题;(2)引进数学符号或圆的方程,建立数学模型;(3)利用数学的方法将得到的常规数学问题(即数学模型)予以解答,求得结果;(4)转译成具体问题作出解答.方法点拨 应用直线与圆的方程解决实际问题时,要注意建立数学模型,把实际问题转化为数学问题来解决,一般情况下需要建立适当的直角坐标系,应用方程的思想来处理.二、坐标法 用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆,将几何问题化为代数问题;然后通过代数运算解决代数问题;最后解释代数运算结果的几何意义,得出几何问题的结论.这就是用坐标方法解决平面几何问题的“三部曲”: 第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将几何问题转化为代数问题; 第二步:通过代数运算,解决代数问题; 第三步:把代数运算结果“翻译”成几何结论.要点提示 应用几何法,即坐标法解决平面几何问题时,先建系,把相应的几何元素用坐标或方程来表示,将几何问题转化为代数问题,通过代数运算解决,最终得到几何问题的结论,要注意这一方法的三个步骤.问题探究问题1 怎样判断直线与圆的位置关系较好?在直线与圆相离的情况下,如何求圆上的点到直线距离的最大值或最小值?探究:在判断直线与圆的位置关系时,虽代数法可用,但不如用几何法简单、直观,即研究圆心到直线距离与半径大小关系.在直线与圆相离的情况下,圆心距,根据图形分析可知:圆上点到直线距离的最小值是d-r,最大值是d+r.问题2 有人说,研究两圆位置关系就是将两圆方程联立,整理成关于x的方程,来判断其方程解的个数,若方程有一解,则两圆相切,这种说法正确吗?试举例说明.探究:这种说法不正确.如圆c1:x2+y2=4,圆c2:(x-2)2+y2=4.将两圆方程联立,消去y,整理成关于x的方程为x=1,此方程只有一解x=1,但由图分析:两圆相交,有两个公共点,所以说,在判断两圆位置关系时,最好不要用方程求解,而是利用圆心距与两圆关系来判断.典题热题例1 已知直线y=kx+1与圆x2+y2+kx-y-4=0的两个交点a、b关于直线y=x对称,求交点a、b的坐标及ab长.思路解析:由题意,可以先利用题中的对称关系,求出k值,然后再求交点坐标,代入两点间距离公式求出弦长ab.解:因为直线y=kx+1与圆x2+y2+kx-y-4=0的两个交点a、b关于直线y=x对称,即点(x1,y1)与点(y1,x1)均在直线和圆上,所以k=-1符合圆的条件. 解方程组得曲线的两个交点a(2,-1),b(-1,2). 所以|ab|=.辨析比较 本题若不求k值,由方程组联合求解交点a、b,在a、b的坐标表示中含有k,再反过来由对称关系确定k值,也可以求出,但计算较繁,不如上法简捷.例2 如图4-2-3,一座圆拱桥,当水面距拱顶2米时,水面宽12米,当水面下降1米后,水面宽多少米? 图4-2-3 图4-2-4思路解析:本题考查应用坐标法研究平面图形有关的实际问题,因此,要建立适当坐标系,利用圆的方程来解决.解:以拱顶为坐标原点,以过拱顶的竖直直线为y轴建立直角坐标系,设所在圆的圆心为c,水面所在弦的端点为a、b, 则a(6,-2).设圆的方程为x2+(y+r)2=r2, 将a(6,-2)代入方程得r=10,圆的方程为x2+(y+10)2=100,当水面下降1米后, 可设点a(x0,-3)(x00). 如图4-2-4,将a(x0,-3)代入圆方程,求得x0=.水面下降1米,水面宽为2x0=14.28(米).方法归纳 此为一道数学的实际应用问题,一般思路是根据题设条件建立适当的直角坐标系,尽可能地减少未知数的个数.把实际问题转化为数学问题,通过待定系数法设圆的方程进行求解.例3 已知直线l:y=k()与圆o:x2+y2=4相交于a、b两点,o为坐标原点,abo的面积为s.(1)试将s表示成k的函数s(k),并求其定义域;(2)求s的最大值,并求取得最大值时k的值.思路解析:(1)求abo的面积可用s=底高,底为ab,高为圆心到直线距离;(2)可利用abo的几何性质解决.解:(1)由y=k()得kx-y+=0,圆心到l距离d=,|ab|=,sabo=|ab|d=,又d2,即且k0, 得k(-1,0)(0,1),s(k)=,k(-1,0)(0,1).(2)s=|oa|ob|sinaob=2si
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土地利用规划审批
- 眼底病变早期筛查指导
- 心血管系统医学知识宣教培训课件
- 2020-2025年公用设备工程师之专业知识(暖通空调专业)押题练习试卷B卷附答案
- 《随机现象的统计规律性》教案
- 2025标准城市公寓建设合同
- 神经重症患者液体管理护理
- 2025商用房地产开发合同示例文本
- 肺癌放化疗护理指南培训
- 肾衰竭透析监测指南
- 《干细胞研究与应用》课件
- 2023年度中央机关遴选笔试题B卷真意试卷答案解析
- 房地产经纪行业客户信息保护协议
- 《高等数学基础》课件-第四章 导数的应用(含课程思政元素)
- 一年级语文上册生字描红(人教版)
- 2025-2030石材加工机械行业市场现状供需分析及投资评估规划分析研究报告
- 活动现场广告安装安全措施
- 食品公司5S管理培训
- 吉林中考英语单词表
- (完整版)保安培训课件
- 混凝土芯样抗压强度试验报告自动计算模板
评论
0/150
提交评论