



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学 第一章 导数及其应用 1.3.1 利用导数判断函数的单调性课堂探究 新人教b版选修2-2探究一 利用导数判断或证明函数的单调性1利用函数单调性的定义判断或证明函数的单调性时,过程较为烦琐,但借助导数,只需分析函数导数值的正负即可,因此应善于借助导数研究函数的单调性2利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性如果解析式中含有参数,应进行分类讨论【典型例题1】 (1)函数f(x)2x在下列哪个区间上是单调递减的()a(1,) b.c. d(3,0)(2)证明函数f(x)在上单调递减思路分析:(1)只需分析哪个区间上的导数值恒小于0即可;(2)要证f(x)在上单调递减,只需证明f(x)0在区间上恒成立即可(1)解析:因为f(x)2,所以当x时,x2,(4,)f(x)20,这时f(x)在上单调递减,故选c.答案:c(2)证明:因为f(x),所以f(x).由于x,所以cos x0,sin x0,因此xcos xsin x0,故f(x)0,所以f(x)在上单调递减探究二 利用导数求函数的单调区间1利用导数求函数单调区间的步骤如下:(1)求函数f(x)的定义域;(2)求导数f(x);(3)在定义域内解不等式f(x)0,得单调递增区间;在定义域内解不等式f(x)0,得单调递减区间2与利用函数单调性的定义判断函数的单调性或求函数的单调区间相比,利用导数求函数的单调区间显得更加简单易行,其实质是转化为解不等式问题,但也必须首先考查函数的定义域,在定义域内解不等式另外,利用导数往往适合求一些高次函数的单调区间,其单调区间有时不止一个,这时在写出它们的单调区间时,不能将各个区间用并集符号连接3当函数f(x)的解析式中含有参数时,求单调区间可能需要对参数进行分类讨论才能确定其单调区间【典型例题2】 求下列各函数的单调区间:(1)f(x)2x33x2;(2)f(x);(3)f(x)cos xx,x(0,);(4)f(x)exax.思路分析:可按照求函数单调区间的步骤进行求解,其中(1)要注意单调区间的写法;(2)要注意导数的求法;(3)要注意正弦函数的性质;(4)要注意对参数a进行讨论解:(1)函数定义域为r,且f(x)6x26x.令f(x)0,即6x26x0.解得x1或x0;令f(x)0,即6x26x0,解得0x1.所以f(x)的单调递增区间是(,0)和(1,);单调递减区间是(0,1)(2)函数f(x)的定义域为(0,),且f(x).令f(x)0,即0,得0xe;令f(x)0,即0,得xe,所以f(x)的单调递增区间是(0,e),单调递减区间是(e,)(3)函数f(x)的定义域为(0,),且f(x)sin x.令f(x)0,即sin x0,解得0x或x;令f(x)0,即sin x0,解得x.故f(x)的单调递增区间是和,单调递减区间是.(4)函数定义域为r,且f(x)exa.当a0时,f(x)exa0恒成立,f(x)在r上单调递增;当a0时,由f(x)exa0,得exa,所以xln (a),由f(x)exa0,得exa,所以xln(a)所以f(x)在(ln(a),)上单调递增,在(,ln(a)上单调递减综上,当a0时,f(x)的单调递增区间是(,),无单调递减区间;当a0时,f(x)的单调递增区间是(ln(a),),单调递减区间是(,ln(a)探究三 已知函数的单调性求参数的取值范围1已知函数的单调性求参数的范围,这是一种非常重要的题型在某个区间上,f(x)0(或f(x)0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f(x)0(或f(x)0)是不够的,即还有可能f(x)0也能使得f(x)在这个区间上单调,因而对于能否取到等号的问题需要单独验证2已知函数f(x)是增函数(减函数)求函数解析式中参数的取值范围时,应令f(x)0(f(x)0)恒成立,解出参数的取值范围,然后再检验参数的取值能否使f(x)恒等于零,若能恒等于零,则应舍去这个参数的值,若f(x)不恒等于零,则其符合题意3如果在函数解析式中不含参数,而在区间中含有参数,则可首先求出f(x)的单调区间,然后根据这一单调区间与给定区间的包含关系求出参数范围【典型例题3】 (1)若函数f(x)在(0,)上单调递增,求a的取值范围(2)若函数f(x)ax33x2x1在r上是减函数,求a的取值范围;(3)若函数f(x)在区间(m,4m1)上单调递增,求实数m的取值范围思路分析:对于(1)(2),可转化为f(x)0或f(x)0恒成立问题求解,但要注意检验端点值是否符合要求;对于(3),可先求f(x)的单增区间,再令所给区间是其子集即可解:(1)由于f(x),所以0在(0,)上恒成立即0恒成立又因为当x(0,)时,x20,所以a0.但当a0时,f(x)是常数函数,不符合题意故a的取值范围是(,0)(2)f(x)3ax26x1,依题意知3ax26x10在r上恒成立显然当a0时不满足题意因此解得a3.而当a3时,f(x)3x33x2x133,由函数yx3在r上的单调性,可知当a3时,f(x)(xr)是减函数;故实数a的取值范围是(,3(3)函数定义域为r,且f(x),令f(x)0,得1x1,即f(x)的单调递增区间是(1,1),因此有解得m.故m的取值范围是.点评 本例(3)中要特别注意不能遗漏条件4m1m.探究四 函数图象与其导函数图象之间的关系在研究函数图象与其导函数图象之间的关系时,要抓住各自的关键要素,对于原函数,重点分析其在哪个区间上单调递增,哪个区间上单调递减,而对于其导函数的图象,则应确定哪个区间上其函数值大于零,哪个区间上函数值小于零,从而得出原函数的单调区间【典型例题4】 已知函数yf(x),其导函数yf(x)的图象如图,则对原函数yf(x),下列说法正确的是()af(x)在(,1)上单调递减bf(x)在(1,3)上单调递增cf(x)在(0,2)上单调递减df(x)在(3,4)上单调递减解析:由f(x)的图象可知,当x(0,2)时,f(x)0,故f(x)在(0,2)上单调递减,其余说法均不正确答案:c探究五 利用导数证明不等式1利用导数证明不等式,是不等式证明的一种重要方法,其关键是构造函数2要证不等式f(x)g(x),可构造函数(x)f(x)g(x),只需证明(x)在其定义域上满足(x)0即可,根据函数的单调性,借助于导数求解【典型例题5】 已知x1,求证:xln(1x)分析:构造函数f(x)xln(1x),只要证明在x(1,)上,f(x)0恒成立即可证明:设f(x)xln(1x)(x1)f(x)1(x1),当x1时,f(x)0,f(x)在1,)上是增函数又f(1)1ln 21ln e0,即f(1)0,当x1时,f(x)0,故当x1时,xln(1x)探究
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工作职责如何体现个人价值
- 地产销售渠道规划
- 2025云南省临沧市镇康县实验中学自主公开招聘教师(15人)笔试备考试题及答案解析
- 农田土地资源的整合与利用
- 2025新疆和田中汇典当有限责任公司岗位社会化招聘3人笔试历年参考题库附带答案详解
- 煤矿人员紧急救援预案
- 2025天津港(集团)有限公司选聘资产评估专家15人笔试历年参考题库附带答案详解
- Web服务投入产出分析报告
- 2025年事业单位工勤技能-广西-广西药剂员一级(高级技师)历年参考题库含答案解析
- 2025年事业单位笔试-江苏-江苏病案信息技术(医疗招聘)历年参考题库含答案解析
- 施工质量标准化手册之桥涵工程
- 彩色沥青合同协议
- 医院培训课件:《环境卫生学监测的方法》
- 中队辅导员培训材料
- 2025年巷道掘砌工(技师)职业技能鉴定理论考试题库(含答案)
- (高清版)DB12∕T 934-2020 公路工程资料管理技术规程
- 深度解析Palantir介绍
- 小学五爱教育
- 玻璃幕墙维修保养施工方案
- 开学第一课消防安全知识课件
- 亲子关系断绝协议书范文模板
评论
0/150
提交评论