高中数学 第二章 推理与证明 2.3 数学归纳法 数学归纳法的应用素材 新人教A版选修2-2.doc_第1页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学归纳法的应用1、确定一个表达式在所有自然数范围内是成立的或者用于确定一个其他的形式在一个无穷序列是成立的。2、数理逻辑和计算机科学广义的形式的观点指出能被求出值的表达式是等价表达式。3、证明数列前n项和与通项公式的成立。4、证明和自然数有关的不等式。变体在应用,数学归纳法常常需要采取一些变化来适应实际的需求。下面介绍一些常见的数学归纳法变体。从0以外的数字开始如果我们想证明的命题并不是针对全部自然数,而只是针对所有大于等于某个数字b的自然数,那么证明的步骤需要做如下修改:第一步,证明当n=b时命题成立。第二步,证明如果n=m(mb)成立,那么可以推导出n=m+1也成立。用这个方法可以证明诸如“当n3时,n22n”这一类命题。针对偶数或奇数如果我们想证明的命题并不是针对全部自然数,而只是针对所有奇数或偶数,那么证明的步骤需要做如下修改:奇数方面:第一步,证明当n=1时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。偶数方面:第一步,证明当n=0或2时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。递降归纳法数学归纳法并不是只能应用于形如“对任意的n”这样的命题。对于形如“对任意的n=0,1,2,.,m”这样的命题,如果对一般的n比较复杂,而n=m比较容易验证,并且我们可以实现从k到k-1的递推,k=1,.,m的话,我们就能应用归纳法得到对于任意的n=0,1,2,.,m,原命题均成立。如果命题p(n)在n=1,2,3,.,t时成立,并且对于任意自然数k,由p(k),p(k+1),p(k+2),.,p(k+t-1)成立,其中t是一个常量,那么p(n)对于一切自然数都成立.跳跃归纳法设p(n)表示一个与自然数n有关的命题,若(1)p(1),p(2),p(l)成立;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论