


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:13.3.1 等腰三角形(1)三维 目标知识与技能经历剪纸、折纸等活动,进一步认识等腰三角形,了解等腰三角形是轴对称图形过程与方法能够探索、归纳、验证等腰三角形的性质,并学会应用等腰三角形的性质情感态度与价值观培养分类讨论、方程的思想和添加辅助线解决问题的能力教学重点:等腰三角形的性质的探索和应用教学难点:等腰三角形的性质的验证教学方法与手段:采用“情境探究”的方法教学过程:一提出问题,创设情境请同学们拿出一张长方形纸片,按照老师要求对折,然后用剪刀或小刀裁去阴影部分,再把裁剪后的直角三角形展开得到的三角形有什么是什么三角形呢?1从折剪的过程可知,ABC是什么三角形呢?2在上述ABC中,AB、AC、BC,B、C的名称是什么呢?3上面剪出的等腰ABC是轴对称图形吗?如果是,其对称轴是什么(借助图中的线表示)?(1)由折叠和对称可知,在ABC中,B与C的大小关系如何;(2)由折叠和对称又可知:BAD与DAC,BD与DC大小关系如何,AD与BC的位置关系是什么?二导入新课: 要求学生通过自己的思考来做一个等腰三角形 作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形 等腰三角形的定义:有两条边相等的三角形叫做等腰三角形相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角 思考: 1等腰三角形是轴对称图形吗?请找出它的对称轴 2等腰三角形的两底角有什么关系? 3顶角的平分线所在的直线是等腰三角形的对称轴吗? 4底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢? 结论:等腰三角形是轴对称图形它的对称轴是顶角的平分线所在的直线因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线 要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系 沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高 由此可以得到等腰三角形的性质: 1等腰三角形的两个底角相等(简写成“等边对等角”) 2等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”) 由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质同学们现在就动手来写出这些证明过程) 如右图,在ABC中,AB=AC,作底边BC的中线AD,因为 所以BADCAD(SSS) 所以B=C 如右图,在ABC中,AB=AC,作底边BC的高AD,因为证明: 作BC边上 的高AD则ADBADC 90在RtABD和RtACD中ABAC ADAD (公共边) RtABDRtACD(HL) BC(全等三角形对应角相等)如右图,在ABC中,AB=AC,作顶角BAC的角平分线AD,因为 所以BADCAD 所以BD=CD,BDA=CDA=BDC=90 例1如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD, 求:ABC各角的度数 分析:根据等边对等角的性质,我们可以得到A=ABD,ABC=C=BDC,再由BDC=A+ABD,就可得到ABC=C=BDC=2A再由三角形内角和为180,就可求出ABC的三个内角 把A设为x的话,那么ABC、C都可以用x来表示,这样过程就更简捷 解:因为AB=AC,BD=BC=AD, 所以ABC=C=BDC A=ABD(等边对等角) 设A=x,则 BDC=A+ABD=2x, 从而ABC=C=BDC=2x 于是在ABC中,有 A+ABC+C=x+2x+2x=180, 解得x=36 在ABC中,A=35,ABC=C=72师下面我们通过练习来巩固这节课所学的知识三随堂练习:课本P77练习 1、2、3 教师小结:这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年企业品牌网络营销推广项目人员劳动合同
- 2025型高端冰箱零配件集中采购及一体化售后服务合同
- 2025年度个性定制离婚程序全程协助服务合同
- 2025微创手术器械研发合作与临床试验支持合同
- 2025年环保公益行动专用礼品定制与配送服务协议
- 2025年户外公共景观花卉租赁与系统性养护服务协议
- 2025年学校艺术节活动用车租赁合同书
- 2025年智能交通网络设施升级改造用地补偿协议范本
- 2025年企业品牌形象重塑与全渠道营销服务合同
- 2025年度智能写作助手学术论文自动生成技术服务合同
- 2025年机械设计与制造考试试题及答案
- 护理事业十五五发展规划(2026-2030)
- 大数据风控与信用评估体系
- 生物制造中试能力建设平台培育指南(2025版)
- 新媒体运营学习心得体会
- (高清版)DB62∕T 4704-2023 医养结合机构基本服务规范
- DB32T 5124.2-2025 临床护理技术规范 第2部分:成人危重症患者无创腹内压监测
- 可信数据空间解决方案星环科技
- Part3-4 Unit1 Travel 课件-【中职专用】高一英语(高教版2021基础模块2)(2023修订版)
- 中学班级文化建设实施方案
- 2025年中学教师资格考试《综合素质》核心考点特训题库(含答案)之教育管理论述题
评论
0/150
提交评论