免费预览已结束,剩余11页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第37讲空间几何体的三视图、直观图、表面积和体积考纲要求考情分析命题趋势1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构2能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简单组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图3会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式4了解球、棱柱、棱锥、台的表面积和体积的计算公式.2017全国卷,162017全国卷,152017全国卷,92017江苏卷,62017北京卷,62017天津卷,11空间几何体的结构特征、三视图、直观图、表面积和体积在高考中每年都会考查,主要考查几何体的三视图及已知几何体的三视图求几何体的表面积和体积.分值:5分1空间几何体的结构特征(1)多面体的结构特征多面体结构特征棱柱有两个面!_平行_#,其余各面都是四边形且每相邻两个面的交线都平行且相等棱锥有一个面是多边形,而其余各面都是有一个!_公共顶点_#的三角形棱台棱锥被平行于!_底面_#的平面所截,截面和底面之间的部分叫做棱台(2)旋转体的形成几何体旋转图形旋转轴圆柱矩形矩形一边所在的直线圆锥直角三角形一直角边所在的直线圆台直角梯形或等腰梯形直角腰所在的直线或等腰梯形上下底中点连线球半圆或圆直径所在的直线2空间几何体的三视图(1)三视图的名称几何体的三视图包括:!_正视图_#、!_侧视图_#、!_俯视图_#.(2)三视图的画法在画三视图时,重叠的线只画一条,挡住的线要画成!_虚线_#.三视图的正视图、侧视图、俯视图分别是从几何体的!_正前_#方、!_正左_#方、!_正上_#方观察几何体的正投影图3空间几何体的直观图空间几何体的直观图常用!_斜二测_#画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x轴、y轴的夹角为!_45或135_#,z轴与x轴和y轴所在平面!_垂直_#.(2)原图形中平行于坐标轴的线段,直观图中仍分别!_平行于坐标轴_#;平行于x轴和z轴的线段在直观图中保持原长度!_不变_#;平行于y轴的线段在直观图中长度为!_原来的一半_#.4空间几何体的表面积与体积名称几何体表面积体积柱体(棱柱和圆柱)s表面积s侧2s底v!_sh_#锥体(棱锥和圆锥)s表面积s侧s底v!_sh_#台体(棱台和圆台)s表面积s侧s上s下v(s上s下)h球s!_4r2_#v!_r3_#1思维辨析(在括号内打“”或“”)(1)底面是正方形的四棱柱为正四棱柱()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥()(3)夹在圆柱的两个平行截面间的几何体还是圆柱()(4)用斜二测画法画水平放置的a时,若a的两边分别平行于x轴和y轴,且a90,则在直观图中,a45.()(5)正方体、球、圆锥各自的三视图中,三视图均相同()解析(1)错误因为侧棱不一定与底面垂直(2)错误尽管几何体满足了一个面是多边形,其余各面都是三角形,但不能保证各三角形具有公共顶点(3)错误因为两个平行截面不能保证与底面平行(4)错误a应为45或135.(5)错误正方体的三视图由于正视的方向不同,其三视图的形状可能不同,圆锥的侧视图与俯视图显然不相同2用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是(c)a圆柱b圆锥c球体d圆柱、圆锥、球体的组合体解析当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面3某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为5的等腰三角形,侧视图是一个底边长为6,高为5的等腰三角形,则该几何体的体积为(b)a24b80c64d240解析结合题意知该几何体是四棱锥,棱锥底面是长和宽分别为8和6的矩形,棱锥的高是5,可由锥体的体积公式得v86580.4表面积为3的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为!_2_#.解析设圆锥的母线为l,圆锥底面半径为r,则rlr23,l2r,解得r1,即直径为2.5(2017全国卷)长方体的长,宽,高分别为3,2,1,其顶点都在球o的球面上,则球o的表面积为!_14_#.解析依题意得,长方体的体对角线长为,记长方体的外接球的半径为r,则有2r,r,因此球o的表面积等于4r214.一空间几何体的结构特征解决与空间几何体结构特征有关问题的三个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型(3)通过反例对结构特征进行辨析【例1】 (1)给出下列命题:在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;棱台的上、下底面可以不相似,但侧棱长一定相等其中正确命题的个数是(a)a0b1c2d3(2)以下命题:以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;圆柱、圆锥、圆台的底面都是圆面;一个平面截圆锥,得到一个圆锥和一个圆台其中正确命题的个数为(b)a0b1c2d3解析(1)不一定,只有当这两点的连线平行于轴时才是母线;不一定,当以斜边所在直线为轴旋转时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;错误,棱台上的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等(2)由圆台的定义可知错误,正确对于命题,只有平行于圆锥底面的平面截圆锥,才能得到一个圆锥和一个圆台,不正确二空间几何体的三视图和直观图(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系【例2】 (1)(2016天津卷)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为(b)(2)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是(a)解析(1)由几何体的正视图、俯视图以及题意可画出几何体的直观图,如图所示,该几何体的侧视图为b项故选b(2)由直观图可知,在直观图中多边形为正方形,对角线长为,所以原图形为平行四边形,位于y轴上的对角线长为2.三空间几何体的表面积和体积(1)以三视图为载体的几何体的表面积问题,关键是分析三视图,确定几何体中各元素之间的位置关系及数量(2)多面体的表面积是各个面的面积之和;求组合体的表面积时要注意衔接部分的处理;求旋转体的表面积时要注意其侧面展开图的应用(3)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解其中,等积转换法多用来求三棱锥的体积(4)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解(5)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解【例3】 (1)(2016山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为 (c)abcd1(2)(2016全国卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为(b)a1836b5418c90d81解析(1)由三视图可知四棱锥为正四棱锥,底面正方形的边长为1,四棱锥的高为1,球的直径为正四棱锥底面正方形的对角线,所以球的直径2r,即r,所以半球的体积为r3.又正四棱锥的体积为121,所以该几何体的体积为.故选c(2)由三视图可知,该几何体是底面为正方形(边长为3),高为6,侧棱长为3 的斜四棱柱,其表面积s2322332365418.故选b四与球有关的切、接问题(1)正方体的内切球的直径为棱长,外接球的直径为正方体的体对角线长,此问题也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥(2)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的.求球的半径关键是找到由球的半径构成的三角形,解三角形即可求球的半径(3)球与旋转体的组合通常作出它们的轴截面解题(4)球与多面体的组合,通常过多面体的一条侧棱和球心,或“切点”“接点”作出截面图,把空间问题化归为平面问题【例4】 (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为(a)ab16c9d(2)已知直三棱柱abca1b1c1的6个顶点都在球o的球面上,若ab3,ac4,abac,aa112,则球o的半径为(c)ab2cd3(3)若一个正四面体的表面积为s1,其内切球的表面积为s2,则!_#.(4)(2017全国卷)已知三棱锥sabc的所有顶点都在球o的球面上,sc是球o的直径若平面sca平面scb,saac,sbbc,三棱锥sabc的体积为9,则球o的表面积为!_36_#.解析(1)如图所示,设球的半径为r,底面中心为o且球心为o.正四棱锥pabcd中ab2,ao.po4,在rtaoo中,ao2ao2oo2,r2()2(4r)2,解得r.该球的表面积为4r242.(2)如图所示,由球心作平面abc的垂线,则垂足为bc的中点m.又ambc,omaa16,所以球o的半径roa.(3)设正四面体棱长为a,则正四面体表面积为s14a2a2,其内切球半径为正四面体高的,即raa,因此内切球表面积为s24r2,则.(4)设球o的半径为r,sc为球o的直径,点o为sc的中点,连接ao,ob,saac,sbbc,aosc,bosc,平面sca平面scb,平面sca平面scbsc,ao平面scb,所以vsabcvasbcssbcaoao,即9r,解得r3,球o的表面积s4r243236.1某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是(a)a1b3c1d3解析由几何体的三视图可得,该几何体是由半个圆锥和一个三棱锥组成的,故该几何体的体积v32131.故选a2若几何体的三视图如图所示,则该几何体的外接球的表面积为(a)a34b35c36d17解析由几何体的三视图知它的底面是正方形且有一侧棱垂直于底面的四棱锥,可把它补成一个长、宽、高分别为3,3,4的长方体,该长方体的外接球即为原四棱锥的外接球,所以4r2323242181634(其中r为外接球的半径),外接球表面积为s4r234.故选a3某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为(d)a4164b5164c4162d5162解析由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为24216,两个底面面积之和为222;半圆柱的侧面积为44,两个底面面积之和为212,所以几何体的表面积为5162.故选d4设甲、乙两个圆柱的底面积分别为s1,s2,体积分别为v1,v2.若它们的侧面积相等且,则的值是!_#.解析设甲、乙两个圆柱的底面半径分别为r1,r2,高分别为h1,h2,则有2r1h12r2h2,即r1h1r2h2.又,则2.易错点不能巧妙运用长方体和正方体解题错因分析:不能借助长方体和正方体协助解题,使解题受阻【例1】 某几何体的一条棱长为m,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为和的线段,则m的值为()a3b2c4d2解析将这条棱放在长方体内,设长方体的长、宽、高分别为a,b,c,对角线ac为该棱,则cd为该棱的正视图,长为,ac为俯视图,长为,cb为侧视图,长为,则则ac2a2b2c29,则ac3.答案a【跟踪训练1】 (2017北京卷)某三棱锥的三视图如图所示,则该三棱锥的体积为(d)a60b30c20d10解析如图,把三棱锥abcd放到长方体中,长方体的长、宽、高分别为5,3,4,bcd为直角三角形,直角边分别为5和3,三棱锥abcd的高为4,故该三棱锥的体积v53410.课时达标第37讲解密考纲考查空间几何体的结构特征、三视图、体积与表面积,以选择题或填空题的形式出现一、选择题1下列说法正确的是(d)a有两个面平行,其余各面都是四边形的几何体叫棱柱b有两个面平行,其余各面都是平行四边形的几何体叫棱柱c有一个面是多边形,其余各面都是三角形的几何体叫棱锥d棱台各侧棱的延长线交于一点解析由棱柱和棱锥的概念可知,a,b,c项均错误由于棱台是由平行于棱锥底面的平面截棱锥所得到的截面与底面之间的部分,故棱台各侧棱的延长线交于一点2某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是(d)解析由几何体的正视图和侧视图,结合四个选项中的俯视图知,若为d项,则正视图应为,故d项不可能故选d3某三棱锥的三视图如图所示,则该三棱锥的表面积是(b)a2b22cd解析三棱锥的高为1,底面为等腰三角形,如图,因此表面积是2221222.故选b4已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得出这个几何体的内切球半径是(c)abc2d36解析由三视图可知,该几何体为三棱锥,设内切球半径为r,则由棱锥的体积公式有sh(s1s2s3s4)r,其中s222,h2,s1,s2,s3,s4分别是三棱锥四个面的面积,s1s2s2,s3s42,所以4(42)r,解得r2.5一个几何体按比例绘制的三视图如图所示(单位:m),则该几何体的体积为(a)a m3b m3c m3d m3解析由三视图可知,该几何体为如图所示的几何体,其体积为3个正方体的体积加三棱柱的体积,所以v3.故选a6(2017全国卷)如图,网络纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为(b)a90b63c42d36解析依题意,题中的几何体是用一个平面将一个底面半径为3、高为10的圆柱截去一部分后所剩余的部分,可在该几何体的上方拼接一个与之完全相同的几何体,从而形成一个底面半径为3、高为10414的圆柱,因此该几何体的体积等于321463.故选b二、填空题7边长为2的正方体的顶点都在球o的球面上,则球o的表面积和体积分别为!12,4#.解析正方体的顶点都在球o的球面上,正方体的体对角线的长度就是其外接球的直径设球的半径为r,则2r2,即r,球o的表面积为s4()212,体积为vr34.8等腰梯形abcd,上底cd1,腰adcb,下底 ab 3,以下底所在直线为x轴,则由斜二测画法画出的直观图abcd的面积为!_#.解析如图所示:因为oe1,所以oe,ef,则直观图abcd的面积为s(13).9某四棱锥的三视图如图所示,则最长的一条侧棱的长度是!#.解析根据三视图可知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 废旧电池及电池系统处置员操作竞赛考核试卷含答案
- 环境监测员安全培训竞赛考核试卷含答案
- 液化天然气储运工诚信水平考核试卷含答案
- 木质家具制作工岗前技能竞赛考核试卷含答案
- 漆器制作工岗前培训效果考核试卷含答案
- 飞机无线电雷达系统装调工冲突解决竞赛考核试卷含答案
- 狂犬病科普教学
- 2025年青海省西宁市中考语文真题卷含答案解析
- 个人近三年工作总结
- 工程项目生产经理个人年度工作总结报告
- 人员技能矩阵管理制度
- T/CECS 10220-2022便携式丁烷气灶及气瓶
- 2024南海农商银行科技金融专业人才社会招聘笔试历年典型考题及考点剖析附带答案详解
- 空调售后外包协议书
- 光伏防火培训课件
- 电视节目编导与制作(全套课件147P)
- 《碳排放管理体系培训课件》
- 2024年人教版八年级历史上册期末考试卷(附答案)
- 区间闭塞设备维护课件:表示灯电路识读
- 压缩空气管道安装工程施工组织设计方案
- 《计算机组成原理》周建敏主编课后习题答案
评论
0/150
提交评论