




免费预览已结束,剩余9页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(浙江专用)2018版高考数学大一轮复习 第二章 函数概念与基本初等函数i 2.8 函数与方程教师用书1函数的零点(1)函数零点的定义对于函数yf(x)(xd),把使f(x)0的实数x叫做函数yf(x)(xd)的零点(2)几个等价关系方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点(3)函数零点的判定(零点存在性定理)如果函数yf(x)在区间a,b上的图象是连续不断的一条曲线,并且有f(a)f(b)0)的图象与零点的关系000)的图象与x轴的交点(x1,0),(x2,0)(x1,0)无交点零点个数210【知识拓展】1有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号2三个等价关系方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点【思考辨析】判断下列结论是否正确(请在括号中打“”或“”)(1)函数的零点就是函数的图象与x轴的交点()(2)函数yf(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)f(b)0.()(3)二次函数yax2bxc(a0)在b24ac0时没有零点()(4)若函数f(x)在(a,b)上单调且f(a)f(b)0,则函数f(x)在a,b上有且只有一个零点()1(教材改编)函数f(x)()x的零点个数为()a0 b1 c2 d3答案b解析f(x)是增函数,又f(0)1,f(1),f(0)f(1)0,f(x)有且只有一个零点2(2016杭州检测)函数f(x)ln xx2的零点所在的区间是()a(,1) b(1,2)c(2,e) d(e,3)答案c解析因为f()e20,f(1)20,f(2)ln 20,所以f(2)f(e)0,所以函数f(x)ln xx2的零点所在区间是(2,e)3函数f(x)2x|log0.5 x|1的零点个数为_答案2解析由f(x)0,得|log0.5x|x,作出函数y|log0.5x|和yx的图象,由上图知两函数图象有2个交点,故函数f(x)有2个零点4函数f(x)ax12a在区间(1,1)上存在一个零点,则实数a的取值范围是_答案解析函数f(x)的图象为直线,由题意可得f(1)f(1)0,(3a1)(1a)0,解得a1,实数a的取值范围是.题型一函数零点的确定命题点1确定函数零点所在区间例1(1)(2016余姚调研)已知函数f(x)ln xx2的零点为x0,则x0所在的区间是()a(0,1) b(1,2) c(2,3) d(3,4)(2)(2016杭州模拟)设函数yx3与y()x2的图象的交点为(x0,y0),若x0(n,n1),nn,则x0所在的区间是_答案(1)c(2)(1,2)解析(1)f(x)ln xx2在(0,)为增函数,又f(1)ln 11ln 120,f(2)ln 200,x0(2,3),故选c.(2)令f(x)x3()x2,则f(x0)0,易知f(x)为增函数,且f(1)0,x0所在的区间是(1,2)命题点2函数零点个数的判断例2(1)函数f(x)的零点个数是_(2)若定义在r上的偶函数f(x)满足f(x2)f(x),当x0,1时,f(x)x,则函数yf(x)log3|x|的零点个数是()a多于4 b4c3 d2答案(1)2(2)b解析(1)当x0时,令x220,解得x(正根舍去),所以在(,0上有一个零点;当x0时,f(x)20恒成立,所以f(x)在(0,)上是增函数又因为f(2)2ln 20,所以f(x)在(0,)上有一个零点综上,函数f(x)的零点个数为2.(2)由题意知,f(x)是周期为2的偶函数在同一坐标系内作出函数yf(x)及ylog3|x|的图象如图,观察图象可以发现它们有4个交点,即函数yf(x)log3|x|有4个零点思维升华(1)确定函数零点所在区间,可利用零点存在性定理或数形结合法(2)判断函数零点个数的方法:解方程法;零点存在性定理、结合函数的性质;数形结合法:转化为两个函数图象的交点个数(1)已知函数f(x)log2x,在下列区间中,包含f(x)零点的区间是()a(0,1) b(1,2)c(2,4) d(4,)(2)函数f(x)xcos x2在区间0,4上的零点个数为()a4 b5c6 d7答案(1)c(2)c解析(1)因为f(1)6log2160,f(2)3log2220,f(4)log240,所以函数f(x)的零点所在区间为(2,4)(2)由f(x)xcos x20,得x0或cos x20.又x0,4,所以x20,16由于cos(k)0(kz),而在k(kz)的所有取值中,只有,满足在0,16内,故零点个数为156.题型二函数零点的应用例3(1)函数f(x)2xa的一个零点在区间(1,2)内,则实数a 的取值范围是()a(1,3) b(1,2)c(0,3) d(0,2)(2)已知函数f(x)|x23x|,xr,若方程f(x)a|x1|0恰有4个互异的实数根,则实数a的取值范围是_答案(1)c(2)(0,1)(9,)解析(1)因为函数f(x)2xa在区间(1,2)上单调递增,又函数f(x)2xa的一个零点在区间(1,2)内,则有f(1)f(2)0,所以(a)(41a)0,即a(a3)0,即a210a90,解得a9.又由图象得a0,0a9.引申探究本例(2)中,若f(x)a恰有四个互异的实数根,则a的取值范围是_答案(0,)解析作出y1|x23x|,y2a的图象如下:当x时,y1;当x0或x3时,y10,由图象易知,当y1|x23x|和y2a的图象有四个交点时,0a.思维升华已知函数零点情况求参数的步骤及方法(1)步骤:判断函数的单调性;利用零点存在性定理,得到参数所满足的不等式(组);解不等式(组),即得参数的取值范围(2)方法:常利用数形结合法(1)(2016舟山模拟)已知函数f(x)x2xa(a0)在区间(0,1)上有零点,则a的取值范围为_(2)(2016浙江高考冲刺)已知函数f(x)是定义在区间2,2上的偶函数,当0x2时,f(x)x22x1,若在区间2,2内,函数g(x)f(x)kx2k有三个零点,则实数k的取值范围是()a(0,) b(0,)c(,) d(,)答案(1)(2,0)(2)c解析(1)ax2x在(0,1)上有解,又yx2x(x)2,函数yx2x,x(0,1)的值域为(0,2),0a2,2a0.(2)因为函数f(x)是定义在区间2,2上的偶函数,且当2x0时,0x2,所以f(x)(x)22(x)1x22x1.函数g(x)f(x)kx2k有三个零点,即函数yf(x)和yk(x2)的图象有三个不同的交点作出函数yf(x)和yk(x2)的图象,如图所示直线yk(x2)过点p(2,0),由图可知kpa,kpb,要使此直线与函数yf(x)有三个不同的交点,则需满足k.题型三二次函数的零点问题例4已知f(x)x2(a21)x(a2)的一个零点比1大,一个零点比1小,求实数a的取值范围解方法一设方程x2(a21)x(a2)0的两根分别为x1,x2(x1x2),则(x11)(x21)0,x1x2(x1x2)10,由根与系数的关系,得(a2)(a21)10,即a2a20,2a1.方法二函数图象大致如图,则有f(1)0,即1(a21)a20,2a1.故实数a的取值范围是(2,1)思维升华解决与二次函数有关的零点问题(1)利用一元二次方程的求根公式(2)利用一元二次方程的判别式及根与系数之间的关系(3)利用二次函数的图象列不等式组(2016瑞安一模)若函数f(x)(m2)x2mx(2m1)的两个零点分别在区间(1,0)和区间(1,2)内,则m的取值范围是_答案解析依题意,结合函数f(x)的图象分析可知m需满足即解得m0,且a1)有两个零点,则实数a的取值范围是_(2)若关于x的方程22x2xaa10有实根,则实数a的取值范围为_思想方法指导(1)函数零点个数可转化为两个函数图象的交点个数,利用数形结合求解参数范围(2)“af(x)有解”型问题,可以通过求函数yf(x)的值域解决解析(1)函数f(x)axxa(a0,且a1)有两个零点,即方程axxa0有两个根,即函数yax与函数yxa的图象有两个交点当0a1时,图象如图所示,此时有两个交点实数a的取值范围为(1,)(2)由方程,解得a,设t2x(t0),则a(t1)2(t1),其中t11,由基本不等式,得(t1)2,当且仅当t1时取等号,故a22.答案(1)(1,)(2)(,221(2016温州模拟)设f(x)ln xx2,则函数f(x)的零点所在的区间为()a(0,1) b(1,2)c(2,3) d(3,4)答案b解析f(1)ln 11210,f(1)f(2)1时,由f(x)1log2x0,解得x,又因为x1,所以此时方程无解综上,函数f(x)的零点只有0,故选d.3已知三个函数f(x)2xx,g(x)x2,h(x)log2xx的零点依次为a,b,c,则()aabc bacbcbac dcab答案b解析方法一由于f(1)10且f(x)为r上的递增函数故f(x)2xx的零点a(1,0)g(2)0,g(x)的零点b2;h10,且h(x)为(0,)上的增函数,h(x)的零点c,因此acb.方法二由f(x)0,得2xx;由h(x)0,得log2xx,作出函数y2x,ylog2x和yx的图象(如图)由图象易知a0,0c1,而b2,故ac0)的解的个数是()a1 b2 c3 d4答案b解析 (数形结合法)a0,a211.而y|x22x|的图象如图,y|x22x|的图象与ya21的图象总有两个交点5已知函数f(x)则使方程xf(x)m有解的实数m的取值范围是()a(1,2) b(,2c(,1)(2,) d(,12,)答案d解析当x0时,xf(x)m,即x1m,解得m1;当x0时,xf(x)m,即xm,解得m2.故实数m的取值范围是(,12,)故选d.6已知xr,符号x表示不超过x的最大整数,若函数f(x)a(x0)有且仅有3个零点,则实数a的取值范围是_答案,)解析当0x1时,f(x)aa;当1x2时,f(x)aa;当2x0的解集是_答案x|x0,即(4x22x6)02x2x30,解集为x|xa),函数g(x)f(x)b有两个零点,即函数yf(x)的图象与直线yb有两个交点,结合图象(图略)可得ah(a),即aa2,解得a1,故a(,0)(1,)9(2016天津)已知函数f(x) (a0,且a1)在r上单调递减,且关于x的方程|f(x)|2恰有两个不相等的实数解,则a的取值范围是_答案解析因为函数f(x)在r上单调递减,所以解得a.作出函数y|f(x)|,y2的图象如图由图象可知,在0,)上,|f(x)|2有且仅有一个解;在(,0)上,|f(x)|2同样有且仅有一个解,所以3a2,即a.综上可得a1,设函数f(x)axx4的零点为m,函数g(x)logaxx4的零点为n,则的最小值为_答案1解析设f(x)ax,g(x)logax,h(x)4x,则h(x)与f(x),g(x)的交点a,b横坐标分别为m,n(m0,n0)因为f(x)与g(x)关于直线yx对称,所以a,b两点关于直线yx对称又因为yx和h(x)4x交点的横坐标为2,所以mn4.又m0,n0,所以()(2)(22 )1.当且仅当,即mn2时等号成立所以的最小值为1.11设函数f(x)(x0)(1)作出函数f(x)的图象;(2)当0ab且f(a)f(b)时,求的值;(3)若方程f(x)m有两个不相等的正根,求m的取值范围解(1)函数f(x)的图象如图所示(2)f(x)故f(x)在(0,1上是减函数,而在(1,)上是增函数由0ab且f(a)f(b),得0a1b且11,2.(3)由函数f(x)的图象可知,当0m1时,方程f(x)m有两个不相等的正根12关于x的二次方程x2(m1)x10在区间0,2上有解,求实数m的取值范围解显然x0不是方程x2(m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025二人合伙人合同协议书电子版
- 2025广西农业科学院植物保护研究所果树病害致灾机理与防控团队公开招聘1人考前自测高频考点模拟试题及答案详解(名校卷)
- 2025广西桂林市第十九中学招聘初中语文代课教师1人模拟试卷及答案详解(名校卷)
- 2025江苏连云港恒驰实业有限公司招聘5人考前自测高频考点模拟试题完整答案详解
- 2025福建漳州城市职业学院招聘38人考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025年东营市垦利区融媒体中心公开招聘工作人员考前自测高频考点模拟试题及完整答案详解
- 2025湖南湘潭市湘潭县云龙中学名优教师招聘5人考前自测高频考点模拟试题及答案详解一套
- 2025福建厦门市集美区新亭小学非在编教师招聘1人模拟试卷及答案详解1套
- 广西安全B证考试题库及答案
- 中药化学考试题库及答案
- 电气自动化专业求职面试题目及答案
- 青年岗位能手工作汇报
- 肝功能实验室指标解读
- 2025年设计概论试题及答案
- 生产恢复管理办法
- 电焊工职业健康安全培训
- 垂体危象的抢救及护理
- 小学生书法课件模板下载
- 无创机械通气并发腹胀的原因分析及护理对策
- 2025年国企中层干部竞聘笔试题含答案
- 禁止攀爬安全课件
评论
0/150
提交评论